Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk catalyst structure

Vanadium phosphates have been established as selective hydrocarbon oxidation catalysts for more than 40 years. Their primary use commercially has been in the production of maleic anhydride (MA) from n-butane. During this period, improvements in the yield of MA have been sought. Strategies to achieve these improvements have included the addition of secondary metal ions to the catalyst, optimization of the catalyst precursor formation, and intensification of the selective oxidation process through improved reactor technology. The mechanism of the reaction continues to be an active subject of research, and the role of the bulk catalyst structure and an amorphous surface layer are considered here with respect to the various V-P-O phases present. The active site of the catalyst is considered to consist of V and V couples, and their respective incidence and roles are examined in detail here. The complex and extensive nature of the oxidation, which for butane oxidation to MA is a 14-electron transfer process, is of broad importance, particularly in view of the applications of vanadium phosphate catalysts to other processes. A perspective on the future use of vanadium phosphate catalysts is included in this review. [Pg.189]

Partial oxidations over complex mixed metal oxides are far from ideal for singlecrystal like studies of catalyst structure and reaction mechanisms, although several detailed (and by no means unreasonable) catalytic cycles have been postulated. Successful catalysts are believed to have surfaces that react selectively vith adsorbed organic reactants at positions where oxygen of only limited reactivity is present. This results in the desired partially oxidized products and a reduced catalytic site, exposing oxygen deficiencies. Such sites are reoxidized by oxygen from the bulk that is supplied by gas-phase O2 activated at remote sites. [Pg.374]

Promoter deposition through different mechanisms can account for different catalyst properties. In particular, chromate depositing as chromia does not easily redissolve but, zinc oxide does redissolve once the leach front passes and the pH returns to the bulk level of the lixiviant. Therefore, chromate can provide a more stable catalyst structure against aging, as observed in the skeletal copper system. Of course, promoter involvement in catalyst activity as well as structural promotion must be considered in the selection of promoters. This complexity once again highlights the dependence of the catalytic activity of these materials on the preparation conditions. [Pg.147]

Raney Ni with additives is also used [77, 276]. In particular, valve metals are added to stabilize the catalyst structure [102,410, 411], thus decreasing the recrystallization and sintering which always takes place as the solution temperature is raised [412] (which points to the high energy state of such an electrode structure). In this respect, potential cycling has also been observed to be detrimental since it can induce recrystallization [407]. This is probably the reason why surface oxidation may be deleterious with Raney structures [390] while it normally results in improved electrocatalytic properties with bulk Ni electrodes [386]. However, after prolonged cathodic load resulting in deactivation, Raney Ni electrodes can be reactivated (temporarily) by means of anodic sweeps [405]. [Pg.42]

Researchers at Sepracor later disclosed the use of a new class of chiral oxazaborolidines derived from r/. v-aminoindanol in the enantioselective borane reduction of a-haloketones.6,7 The 5-hydrogen oxazaborolidine ligand 10 was prepared in situ from d,v-aminoindanol 1 and BH3 THF.8 Stock solutions of 5-methyl oxazaborolidine 11-16 were obtained by reaction of the corresponding N-alkyl aminoindanol with trimethyl boroxine.6,7 5-Methyl catalyst 11 was found to be more selective (94% ee at 0°C) than the 5-hydrogen catalyst 10 (89% ee at 0°C), and enantioselectivities with 11 increased at lower temperatures (96% ee at -20°C). The catalyst structure was modified by introduction of A-a I kyI substituents. As a general trend, reactivities and selectivities decreased as the steric bulk or the chelating ability of the A -alkyl substituent increased (Scheme 17.4). [Pg.323]

Ludwiczek et al. (1978) Fe Real structure, paracrystallinity + — n.a. Role of defects in bulk catalysts... [Pg.321]

Fig. 7.2. Conversion of a reactant vs. temperature.The concentration of reactants [R] within the porous catalyst structure. Concentration of R is (a) uniform for kinetic control, (b) decreasing within the catalyst for pore diffusion control, and (c) zero immediately at the surface of the catalyst for bulk mass transfer. Fig. 7.2. Conversion of a reactant vs. temperature.The concentration of reactants [R] within the porous catalyst structure. Concentration of R is (a) uniform for kinetic control, (b) decreasing within the catalyst for pore diffusion control, and (c) zero immediately at the surface of the catalyst for bulk mass transfer.
The next stage of characterization focuses upon the different phases present within the catalyst particle and their nature. Bulk, component structural information is determined principally by x-ray powder diffraction (XRD). In FCC catalysts, for example, XRD is used to determine the unit cell size of the zeolite component within the catalyst particle. The zeolite unit cell size is a function of the number of aluminum atoms in the framework and has been related to the coke selectivity and octane performance of the catalyst in commercial operations. Scanning electron microscopy (SEM) can provide information about the distribution of crystalline and chemical phases greater than lOOnm within the catalyst particle. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) can be used to obtain information on crystal transformations, decomposition, or chemical reactions within the particles. Cotterman, et al describe how the generation of this information can be used to understand an FCC catalyst system. [Pg.27]

It has been shown for both the selective oxidation of butane (43) and the ammoxidation of methyl-substituted aromatics (55) that the strength of spin-spin exchange in -containing bulk catalysts is related to the catalytic performance. Moreover, results discussed in this section illustrate that the spin-spin exchange properties are already determined by the conditions of catalyst formation and can be assessed in a unique way by EPR spectroscopy. Thus, this technique provides local structural information even for amorphous constituents or disordered phases—information that is hardly accessible by other methods such as XRD. This point is significant because active sites in real catalysts are frequently not located in well-crystallized phases but instead in disordered or even amorphous phases. [Pg.281]

For the purpose of catalyst analysis, the weaknesses of ESCA turn into strengths as it is the chemical bonding of the outer surface of a solid that is of interest and only to a lesser extent its bulk chemical structure. Most of our theoretical understanding of chemical bonding refers, however, to the bulk state (crystal structures)... [Pg.249]

For all phenomena mentioned, the characterization of the oxide bulk, surface/ interface and defect structure of metal oxides is most important, along with stmcture including geometric (crystal) and electronic structure, as well as composition. The variability in catalyst structure and chemical composition (which typically depend... [Pg.369]

Niobium oxide (niobia) is an active catalyst, and can be used as a support for metal nanoparticles or oxides, and it can serve as a promoter in some reactions ([43 5] and references therein). Catalytic applications of niobia include the Fischer-Tropsch synthesis, oxidative dehydrogenation of alkanes, and oxidative coupling of methane. Studies on high-surface-area niobium oxides are complicated by a high degree of complexity because several stable structures (NbO, NbO and Nb O ) exist and the resulting surfaces of high-surface-area niobium oxides are not simple truncations of bulk niobia structures. This is even more so for supported metal oxides when two-dimensional thin films of niobium oxide partially cover a support oxide (Al Oj, SiOj, ZrOj, TiOj, [43]). Nb Oj was also used as a support for V, Cr, Re, Mo, and W oxide overlayers [45, 46]. [Pg.380]


See other pages where Bulk catalyst structure is mentioned: [Pg.219]    [Pg.562]    [Pg.219]    [Pg.562]    [Pg.124]    [Pg.322]    [Pg.323]    [Pg.46]    [Pg.144]    [Pg.271]    [Pg.9]    [Pg.124]    [Pg.249]    [Pg.15]    [Pg.156]    [Pg.355]    [Pg.111]    [Pg.135]    [Pg.220]    [Pg.243]    [Pg.200]    [Pg.12]    [Pg.26]    [Pg.26]    [Pg.30]    [Pg.139]    [Pg.234]    [Pg.254]    [Pg.94]    [Pg.276]    [Pg.339]    [Pg.209]    [Pg.135]    [Pg.213]    [Pg.243]    [Pg.548]    [Pg.66]    [Pg.88]    [Pg.305]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Bulk Structure of Catalysts

Bulk catalysts

Bulk structures

Catalysts structured

Catalysts, structures

© 2024 chempedia.info