Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biomedical applications biocompatibility

Silk fibers or monolayers of silk proteins have a number of potential biomedical applications. Biocompatibility tests have been carried out with scaffolds of fibers or solubilized silk proteins from the silkworm Bombyx mori (for review see Ref. [38]). Some biocompatibility problems have been reported, but this was probably due to contamination with residual sericin. More recent studies with well-defined silkworm silk fibers and films suggest that the core fibroin fibers show in vivo and in vivo biocompatibility that is comparable to other biomaterials, such as polyactic acid and collagen. Altmann et al. [39] showed that a silk-fiber matrix obtained from properly processed natural silkworm fibers is a suitable material for the attachment, expansion and differentiation of adult human progenitor bone marrow stromal cells. Also, the direct inflammatory potential of silkworm silk was studied using an in vitro system [40]. The authors claimed that their silk fibers were mostly immunologically inert in short and long term culture with murine macrophage cells. [Pg.175]

Biomedical applications biocompatible shape memory polymers... [Pg.225]

Polyamines and their ammonium salts have been of interest because they are known to have potential applications as chelating agents (1-3), ion exchange resins (4-6), flocculants (7,8), and other industrial uses (9). Recent biomedical applications have constituted another important use of polymeric amines they have been investigated for use as biocompatable materials, polymeric drugs, immobilization of enzymes, cell-culture substratum and cancer chemotherapeutic agents (10-12). [Pg.127]

Drug Release from PHEMA-l-PIB Networks. Amphiphilic networks due to their distinct microphase separated hydrophobic-hydrophilic domain structure posses potential for biomedical applications. Similar microphase separated materials such as poly(HEMA- -styrene-6-HEMA), poly(HEMA-6-dimethylsiloxane- -HEMA), and poly(HEMA-6-butadiene- -HEMA) triblock copolymers have demonstrated better antithromogenic properties to any of the respective homopolymers (5-S). Amphiphilic networks are speculated to demonstrate better biocompatibility than either PIB or PHEMA because of their hydrophilic-hydrophobic microdomain structure. These unique structures may also be useful as swellable drug delivery matrices for both hydrophilic and lipophilic drugs due to their amphiphilic nature. Preliminary experiments with theophylline as a model for a water soluble drug were conducted to determine the release characteristics of the system. Experiments with lipophilic drugs are the subject of ongoing research. [Pg.210]

Nanoparticle surface modification is of tremendous importance to prevent nanoparticle aggregation prior to injection, decrease the toxicity, and increase the solubility and the biocompatibility in a living system [20]. Imaging studies in mice clearly show that QD surface coatings alter the disposition and pharmacokinetic properties of the nanoparticles. The key factors in surface modifications include the use of proper solvents and chemicals or biomolecules used for the attachment of the drug, targeting ligands, proteins, peptides, nucleic acids etc. for their site-specific biomedical applications. The functionalized or capped nanoparticles should be preferably dispersible in aqueous media. [Pg.237]

Surface modification is necessary in nanoparticles for various reasons (1) to make them biocompatible and non-immunogenic for biomedical applications,... [Pg.237]

Bioerodible polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. By far the most common bioerodible polymers employed for biomedical applications are polyesters and polyethers (e.g., polyethylene glycol), polylactide, polyglycolide and their copolymers). These polymers are biocompatible, have good mechanical properties, and have been used in... [Pg.169]

Polyvinyl alcohol (PVA), which is a water soluble polyhidroxy polymer, is one of the widely used synthetic polymers for a variety of medical applications [197] because of easy preparation, excellent chemical resistance, and physical properties. [198] But it has poor stability in water because of its highly hydrophilic character. Therefore, to overcome this problem PVA should be insolubilized by copolymerization [43], grafting [199], crosslinking [200], and blending [201], These processes may lead a decrease in the hydrophilic character of PVA. Because of this reason these processes should be carried out in the presence of hydrophilic polymers. Polyfyinyl pyrrolidone), PVP, is one of the hydrophilic, biocompatible polymer and it is used in many biomedical applications [202] and separation processes to increase the hydrophilic character of the blended polymeric materials [203,204], An important factor in the development of new materials based on polymeric blends is the miscibility between the polymers in the mixture, because the degree of miscibility is directly related to the final properties of polymeric blends [205],... [Pg.156]

In recent years, CNTs have been receiving considerable attention because of their potential use in biomedical applications. Solubility of CNTs in aqueous media is a fundamental prerequisite to increase their biocompatibility. For this purpose several methods of dispersion and solubilisation have been developed leading to chemically modified CNTs (see Paragraph 2). The modification of carbon nanotubes also provides multiple sites for the attachment of several kinds of molecules, making functionalised CNTs a promising alternative for the delivery of therapeutic compounds. [Pg.33]

Ratner, B. Biomedical applications of hydrogels Critical appraisal and review, in D. F. Williams, Ed. Biocompatibility of Clinical Implant Materials, pp. 145-153. CRC Press, Boca Raton, FL, 1981. [Pg.172]

Finally, biomedical applications aiming at controlled protein adsorption and cell adhesion on iniferter-driven surface graft architectures, by which a high-throughput screening of biocompatibility can be materialized, are presented. [Pg.70]

Carbon nanotubes are unique materials with specific properties [42]. There is a considerable application potential for using nanotubes in the biomedical field. However, when such materials are considered for application in biomedical implants, transport of medicines and vaccines or as biosensors, their biocompatibility needs to be established. Other carbon materials show remarkable long-term biocompatibility and biological action for use as medical devices. Preliminary data on biocompatibility of nanotubes and other novel nanostructured materials demonstrate that we have to pay attention to their possible adverse effects when then-biomedical applications are considered. [Pg.19]


See other pages where Biomedical applications biocompatibility is mentioned: [Pg.138]    [Pg.164]    [Pg.852]    [Pg.233]    [Pg.195]    [Pg.200]    [Pg.273]    [Pg.21]    [Pg.26]    [Pg.32]    [Pg.168]    [Pg.40]    [Pg.94]    [Pg.233]    [Pg.237]    [Pg.238]    [Pg.245]    [Pg.117]    [Pg.138]    [Pg.578]    [Pg.182]    [Pg.23]    [Pg.293]    [Pg.363]    [Pg.53]    [Pg.174]    [Pg.55]    [Pg.173]    [Pg.176]    [Pg.585]    [Pg.148]    [Pg.149]    [Pg.153]    [Pg.65]    [Pg.5]    [Pg.129]    [Pg.252]    [Pg.526]   
See also in sourсe #XX -- [ Pg.508 , Pg.509 ]




SEARCH



Biocompatibility

Biocompatibility applications

Biomedical applications

© 2024 chempedia.info