Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biochemical reactions kinetic mechanism

Increased conversion and product purity are not the only benefits of simultaneous separation during the reaction. The chromatographic reactor was also found to be a very suitable tool for studying kinetics and mechanisms of chemical and biochemical reactions. Some recent publications describe the results on investigation of autocatalytic reactions [135], first-order reversible reactions [136], and estimation of enantioselectivity [137,138]. It is beyond the scope of this chapter to discuss the details, but the interested reader is referred to an overview published by Jeng and Langer [139]. [Pg.185]

In many operations, for instance in a distillation column, it is necessary to understand the fluid dynamics of the unit, as well as the heat and mass transfer relationships. These factors are frequently interdependent in a complex manner, and it is essential to consider the individual contributions of each of the mechanisms. Again, in a chemical reaction the final rate of the process may be governed either by a heat transfer process or by the chemical kinetics, and it is essential to decide which is the controlling factor this problem is discussed in Volume 3, which deals with both chemical and biochemical reactions and their control. [Pg.1208]

The various chemical mechanisms of enzyme action will not be discussed here but an overview of enzyme kinetics is essential to allow a full understanding of metabolic control. Enzymes accelerate biochemical reactions. The precise rate of reaction is influenced by a number of physiological (cellular) factors ... [Pg.39]

One of the most important problems that has been actively studied during the past few years is the hydration of biological molecules, especially carbohydrates, and the effect of hydration on the conformation of the solute molecule, as well as the effect of the latter on the water structure. Different theoretical and experimental methods have been utilized, and the discrepancies between the results, expressed as numbers of hydration, are considerable. In addition, the water molecule is a reactant in a number of biochemical reactions. The kinetics of these reactions is influenced both by the conformation of the carbohydrate and the structure of the water. These questions will be discussed, with particular reference to the contribution of the vibrational, spectroscopic information to an understanding of such complex mechanisms. [Pg.85]

A note on mechanism and memory in the kinetics of biochemical reactions. Math. BioscL 3,421-429 (1968). [Pg.458]

Thermodynamic concepts are useful to apply to the study of enzyme-mediated enzyme kinetics. Through a variety of reaction mechanisms, specific enzymes catalyze specific biochemical reactions to turn over faster than they would without the enzyme present. Making use of the fact that enzymes are not able to alter the overall thermodynamics (free energy, etc.) of a chemical reaction, we can develop sets of mathematical constraints that apply to the kinetic constants of enzyme reaction mechanism. [Pg.19]

There is almost no biochemical reaction in a cell that is not catalyzed by an enzyme. (An enzyme is a specialized protein that increases the flux of a biochemical reaction by facilitating a mechanism [or mechanisms] for the reaction to proceed more rapidly than it would without the enzyme.) While the concept of an enzyme-mediated kinetic mechanism for a biochemical reaction was introduced in the previous chapter, this chapter explores the action of enzymes in greater detail than we have seen so far. Specifically, catalytic cycles associated with enzyme mechanisms are examined non-equilibrium steady state and transient kinetics of enzyme-mediated reactions are studied an asymptotic analysis of the fast and slow timescales of the Michaelis-Menten mechanism is presented and the concepts of cooperativity and hysteresis in enzyme kinetics are introduced. [Pg.69]

While the majority of these concepts are introduced and illustrated based on single-substrate single-product Michaelis-Menten-like reaction mechanisms, the final section details examples of mechanisms for multi-substrate multi-product reactions. Such mechanisms are the backbone for the simulation and analysis of biochemical systems, from small-scale systems of Chapter 5 to the large-scale simulations considered in Chapter 6. Hence we are about to embark on an entire chapter devoted to the theory of enzyme kinetics. Yet before delving into the subject, it is worthwhile to point out that the entire theory of enzymes is based on the simplification that proteins acting as enzymes may be effectively represented as existing in a finite number of discrete states (substrate-bound states and/or distinct conformational states). These states are assumed to inter-convert based on the law of mass action. The set of states for an enzyme and associated biochemical reaction is known as an enzyme mechanism. In this chapter we will explore how the kinetics of a given enzyme mechanism depend on the concentrations of reactants and enzyme states and the values of the mass action rate constants associated with the mechanism. [Pg.69]

Often the key entity one is interested in obtaining in modeling enzyme kinetics is the analytical expression for the turnover flux in quasi-steady state. Equations (4.12) and (4.38) are examples. These expressions are sometimes called Michaelis-Menten rate laws. Such expressions can be used in simulation of cellular biochemical systems, as is the subject of Chapters 5, 6, and 7 of this book. However, one must keep in mind that, as we have seen, these rates represent approximations that result from simplifications of the kinetic mechanisms. We typically use the approximate Michaelis-Menten-type flux expressions rather than the full system of equations in simulations for several reasons. First, often the quasi-steady rate constants (such as Ks and K in Equation (4.38)) are available from experimental data while the mass-action rate constants (k+i, k-i, etc.) are not. In fact, it is possible for different enzymes with different detailed mechanisms to yield the same Michaelis-Menten rate expression, as we shall see below. Second, in metabolic reaction networks (for example), reactions operate near steady state in vivo. Kinetic transitions from one in vivo steady state to another may not involve the sort of extreme shifts in enzyme binding that have been illustrated in Figure 4.7. Therefore the quasi-steady approximation (or equivalently the approximation of rapid enzyme turnover) tends to be reasonable for the simulation of in vivo systems. [Pg.87]

Previous sections of this chapter have focused on developing general principles for enzyme-catalyzed reactions based on analysis of single-substrate enzyme systems. Yet the majority of biochemical reactions involve multiple substrates and products. With multiple binding steps, competitive and uncompetitive binding interactions, and allosteric and covalent activations and inhibitions possible, the complete set of possible kinetic mechanisms is vast. For extensive treatments on a great number of mechanisms, we point readers to Segel s book [183], Here we review a handful of two-substrate reaction mechanisms, with detailed analysis of the compulsory-order ternary mechanism and a cursory overview of several other mechanisms. [Pg.92]

A central question in cellular biology is now to elucidate (meaning to develop models with reliable predictive power) the mechanisms by which the cells transduce information and perform their functions. Cellular biochemical signaling systems are customarily visualized as logic circuits the components for the circuitry, now popularly called modules [78], consist of molecules and biochemical reactions. Hence they can be subjected to kinetic and thermodynamic analysis as we have introduced in the previous chapters. In this chapter, we study several such modules that occur widely in cellular biology. [Pg.105]

Appropriate expressions for the fluxes of each of the reactions in the system must be determined. Typically, biochemical reactions proceed through multiple-step catalytic mechanisms, as described in Chapter 4, and simulations are based on the quasi-steady state approximations for the fluxes through enzyme-catalyzed reactions. (See Section 3.1.3.2 and Chapter 4 for treatments on the kinetics of enzyme catalyzed reactions.)... [Pg.131]

The chemical master equation (CME) for a given system invokes the same rate constants as the associated deterministic kinetic model. Yet the CME is more fundamental than the deterministic kinetic view. Just as Schrodinger s equation is the fundamental equation for modeling motions of atomic and subatomic particle systems, the CME is the fundamental equation for reaction systems. Remember that Schrodinger s equation is not a model for a specific mechanical system. Rather, it is a theoretical framework upon which models for particular systems can be developed. In order to write down a model for an atomic system based on Schrodinger s equation, one needs to know how to write down the Hamiltonian a priori. Similarly, the CME is not a model for a specific biochemical reaction system it is a theoretical framework. To determine the CME model for a reaction system, one must know what are the possible elementary reactions and the associated rate constants. [Pg.262]

Hydrolysis of phosphate esters is one of the fundamental biochemical reactions and a vast amount of research has been devoted to the study of phosphoryl transfer reactions [57-60], both in solution and in enzymes. Despite these efforts there are still ambiguities regarding the interpretation of experimental data (e.g., linear free energy relationships, kinetic isotope effects, crystal structures of enzyme-inhibitor complexes etc.) in terms of detailed reaction mechanisms [21,25,59,60]. Of particular interest has been to determine... [Pg.279]

Studies of kinetic isotopic effects by Chong et al. [24] provided evidence for the formation of an oxocarbonium ion in the NA reaction. The prior results implicated that the formation of the oxocaibonium ion at C-2 is a key step in NA hydrolysis, but it has not yet been proposed any mechanism for its induction and stabilisation that may be fiilly compatible with all the structural, biochemical, and kinetic data. [Pg.116]

Mechanism and kinetics in biochemical systems describe the cellular reactions that occur in living cells. Biochemical reactions involve two or three phases. For example, aerobic fermentation involves gas (air), liquid (water and dissolved nutrients), and solid (cells), as described in the Biocatalysis subsection above. Bioreactions convert feeds called substrates into more cells or biomass (cell growth), proteins, and metabolic products. Any of these can be the desired product in a commercial fermentation. For instance, methane is converted to biomass in a commercial process to supply fish meal to the fish farming industry. Ethanol, a metabolic product used in transportation fuels, is obtained by fermentation of corn-based or sugar-cane-based sugars. There is a substantial effort to develop genetically modified biocatalysts that produce a desired metabolite at high yield. [Pg.30]

However valuable kinetic studies are, they reveal little about how enzymes catalyze biochemical reactions. Biochemists use other techniques to investigate the catalytic mechanisms of enzymes. (A mechanism is a set of steps in a chemical reaction by which a substrate is changed into a product.) Enzyme mechanism investigations seek to relate enzyme activity to the structure and function of the active site. X-ray crystallography, chemical inactivation of active site side chains, and studies using simple model compounds as substrates and as inhibitors are used. [Pg.180]

Detailed information on the mechanism of biochemical reactions may be of crucial importance in designing new molecules having a pharmacological activity. For example, the detailed mechanism of protein hydrolysis by thermolysin has been studied at the QM/MM semiempirical level [25]. The various steps of the reaction and their transition states have been characterized. Fig. 3 (see color plate) shows the structure of the transition state of the rate-determining step. The important consequence of this approach is the fact that it is possible to evaluate the influence of the whole macro-molecular surroundings on the energetics of the process. It then becomes possible, for instance, to predict the influence of a mutation on the reaction kinetics. [Pg.127]

The role of enzymes in regulating biochemical reactions makes them an important target in medicinal chemistry and drug research. If a biochemical pathway runs out of control, it may sometimes be regulated by changing the turnover rate of an enzyme-catalyzed step in the pathway through (partial) inhibition of the enzyme. Once the kinetical, chemical, and structural details of an enzyme mechanism are understood, efficient inhibitors can be designed. However, quite different mechanisms of inhibition are possible. [Pg.579]

The usefulness of undercooled water as a reaction medium has also been demonstrated in biochemical studies. Thus, the kinetics of biochemical reaction sequences can be sufficiently slowed down to become time resolved at subzero temperatures in the unfrozen state. Even more importantly, complex reaction pathways (mechanisms) are unaffected by undercooling, whereas the use of conventional cryoprotectants (glycerol, ethane diol, dimethylsulfoxide, etc.) alters the pathways, although not necessarily the nature of the end products. Finally, single cells or even cell clusters can be stored and kept intact for considerable periods in undercooled aqueous media. [Pg.31]


See other pages where Biochemical reactions kinetic mechanism is mentioned: [Pg.35]    [Pg.25]    [Pg.682]    [Pg.119]    [Pg.130]    [Pg.319]    [Pg.144]    [Pg.126]    [Pg.323]    [Pg.353]    [Pg.5057]    [Pg.4]    [Pg.449]    [Pg.231]    [Pg.148]    [Pg.339]    [Pg.116]    [Pg.284]    [Pg.467]    [Pg.76]    [Pg.10]    [Pg.109]    [Pg.725]    [Pg.1256]    [Pg.355]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Biochemical mechanisms

Biochemical reaction

Biochemical reaction kinetics

Biochemical reactions mechanism

Kinetic mechanism

Kinetic reaction mechanism

Kinetics mechanisms

Kinetics reaction mechanisms

Mechanical reaction kinetics

© 2024 chempedia.info