Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bicarbonate-carbonate solutions studies

Other Coordination Complexes. Because carbonate and bicarbonate are commonly found under environmental conditions in water, and because carbonate complexes Pu readily in most oxidation states, Pu carbonato complexes have been studied extensively. The reduction potentials vs the standard hydrogen electrode of Pu(VI)/(V) shifts from 0.916 to 0.33 V and the Pu(IV)/(III) potential shifts from 1.48 to -0.50 V in 1 Tf carbonate. These shifts indicate strong carbonate complexation. Electrochemistry, reaction kinetics, and spectroscopy of plutonium carbonates in solution have been reviewed (113). The solubiUty of Pu(IV) in aqueous carbonate solutions has been measured, and the stabiUty constants of hydroxycarbonato complexes have been calculated (Fig. 6b) (90). [Pg.200]

Danckwerts et al. (D6, R4, R5) recently used the absorption of COz in carbonate-bicarbonate buffer solutions containing arsenate as a catalyst in the study of absorption in packed column. The C02 undergoes a pseudo first-order reaction and the reaction rate constant is well defined. Consequently this reaction could prove to be a useful method for determining mass-transfer rates and evaluating the reliability of analytical approaches proposed for the prediction of mass transfer with simultaneous chemical reaction in gas-liquid dispersions. [Pg.302]

We are dealing here, therefore, with reciprocal salt-pairs, the behaviour of which has just been discussed in the preceding pages. Since the study of the reaction is rendered more difficult on account of the fact that ammonium bicarbonate in solution, when under atmospheric pressure, undergoes decomposition at temperatures above 15 , this temperature was the one chosen for the detailed investigation of the conditions of equilibrium. Since, further, it has been shown by Bodlander that the bicarbonates possess a definite solubility only when the pressure of carbon dioxide in the solution has a definite value, the measurements were carried out in solutions saturated with this gas. This, however, does not constitute another component, because we have made the restriction that the sum of the partial pressures of carbon dioxide and water vapour is equal to i atmosphere. The concentration of the carbon dioxide is, therefore, not independently variable (p. 7). [Pg.291]

In experiments where Mono Lake water was acidified to remove carbonate and bicarbonate ions and again adjusted to pH 10, more than 90 percent of the soluble plutonium moved to the sediment phase. When carbonate ion concentration was restored, the plutonium returned to solution—strong evidence of the importance of inorganic carbon to solubility in that system(13). Early studies with Lake Michigan water, which has low DOC, had also implicated bicarbonate and carbonate as stabilizing ligands for plutonium at pH 8(14). This latter research characterized the soluble species as mainly anionic in character. [Pg.300]

CO3 species was formed and the X-ray structure solved. It is thought that the carbonate species forms on reaction with water, which was problematic in the selected strategy, as water was produced in the formation of the dialkyl carbonates. Other problems included compound solubility and the stability of the monoalkyl carbonate complex. Van Eldik and co-workers also carried out a detailed kinetic study of the hydration of carbon dioxide and the dehydration of bicarbonate both in the presence and absence of the zinc complex of 1,5,9-triazacyclododecane (12[ane]N3). The zinc hydroxo form is shown to catalyze the hydration reaction and only the aquo complex catalyzes the dehydration of bicarbonate. Kinetic data including second order rate constants were discussed in reference to other model systems and the enzyme carbonic anhy-drase.459 The zinc complex of the tetraamine 1,4,7,10-tetraazacyclododecane (cyclen) was also studied as a catalyst for these reactions in aqueous solution and comparison of activity suggests formation of a bidentate bicarbonate intermediate inhibits the catalytic activity. Van Eldik concludes that a unidentate bicarbonate intermediate is most likely to the active species in the enzyme carbonic anhydrase.460... [Pg.1185]

The ionic conductivity of a solution depends on the viscosity, diffusivity, and dielectric constant of the solvent, and the dissociation constant of the molecule. EFL mixtures can carry charge. The conductivity of perfluoroacetate salts in EFL mixtures of carbon dioxide and methanol is large (10 to 10 " S/cm for salt concentrations of 0.05-5 mM) and increases with salt concentration. The ionic conductivity of tetra-methylammonium bicarbonate (TMAHCO3) in methanol/C02 mixtures has specific conductivities in the range of 9-14 mS/cm for pure methanol at pressures varying from 5.8 to 14.1 MPa, which decreases with added CO2 to a value of 1-2 mS/cm for 0.50 mole fraction CO2 for all pressures studied. When as much as 0.70 mole fraction... [Pg.430]

Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron. Surface Sd. 68 459—468 Bruno, J. Sturam, J.A. Wersin, P. Brand-berg, E. (1992) On the influence of carbonate on mineral dissolutions I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25°C. Geo-chim. Cosmochim. Acta 56 1139—1147 Brusic.V. (1979) Ferrous passivation. In Corrosion Chemistry, 153—184 Bruun Hansen, H.C. Raben-Lange, R. Rau-lund-Rasmussen, K. Borggaard, O.K. [Pg.565]

Compared to studies in acidic media, studies on the electrochemical behavior of 1102 " in basic media are more limited. The report from Morris [52] describing voltammetry results for hydroxo and carbonato uranyl complexes is a recent example. Previous studies have been performed mostly in carbonate and bicarbonate solutions. Wester and Sullivan have studied the reduction of 1102 in these solutions to find an electrochemically irreversible process but disproportionation of U(V)02" " was evidenced only in the bicarbonate solutions [67]. [Pg.1061]

Other physical phenomena that may be associated, at least partially, with complex formation are the effect of a salt on the viscosity of aqueous solutions of a sugar and the effect of carbohydrates on the electrical conductivity of aqueous solutions of electrolytes. Measurements have been made of the increase in viscosity of aqueous sucrose solutions caused by the presence of potassium acetate, potassium chloride, potassium oxalate, and the potassium and calcium salt of 5-oxo-2-pyrrolidinecarboxylic acid.81 Potassium acetate has a greater effect than potassium chloride, and calcium ion is more effective than potassium ion. Conductivities of 0.01-0.05 N aqueous solutions of potassium chloride, sodium chloride, potassium sulfate, sodium sulfate, sodium carbonate, potassium bicarbonate, potassium hydroxide, and sodium hydroxide, ammonium hydroxide, and calcium sulfate, in both the presence and absence of sucrose, have been determined by Selix.88 At a sucrose concentration of 15° Brix (15.9 g. of sucrose/100 ml. of solution), an increase of 1° Brix in sucrose causes a 4% decrease in conductivity. Landt and Bodea88 studied dilute aqueous solutions of potassium chloride, sodium chloride, barium chloride, and tetra-... [Pg.213]


See other pages where Bicarbonate-carbonate solutions studies is mentioned: [Pg.31]    [Pg.387]    [Pg.259]    [Pg.121]    [Pg.482]    [Pg.15]    [Pg.206]    [Pg.378]    [Pg.347]    [Pg.348]    [Pg.626]    [Pg.250]    [Pg.1274]    [Pg.758]    [Pg.651]    [Pg.97]    [Pg.1625]    [Pg.442]    [Pg.167]    [Pg.172]    [Pg.180]    [Pg.189]    [Pg.217]    [Pg.415]    [Pg.108]    [Pg.124]    [Pg.17]    [Pg.486]    [Pg.29]    [Pg.175]    [Pg.274]    [Pg.888]    [Pg.897]    [Pg.85]    [Pg.481]    [Pg.250]    [Pg.309]    [Pg.223]    [Pg.143]    [Pg.156]   


SEARCH



Bicarbonate

Bicarbonate solution

Bicarbonate-carbonate solutions

Carbon studies

Carbon-1 3 solution

Carbonate Solution

Carbonate/bicarbonate

Solution studies

© 2024 chempedia.info