Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzylic alcohols chiral

Kosaka M, Watanabe M, Harada N. Enantioresolution by the chiral phthalic acid method absolute configurations of substituted benzylic alcohols. Chirality 2000 12 362 365. [Pg.1660]

In general, an ethyl(monoalkoxy)zinc is formed with amino alcohols6. Therefore, in the presence of an equimolar amount of chiral amino alcohol, a slow reduction of benzaldehyde to benzyl alcohol is observed rather than alkylation1. Alkylation only occurs with a ratio of diethylzinc to amino alcohol greater than equimolar. Consequently, a two-zinc species is postulated to be the actual catalyst1, n. [Pg.166]

Wang used method D to fashion a key intermediate for the synthesis of rishirilide B (Fig. 4.20).21 The 2,4-bis-OBoc-3-methyl-benzyl alcohol (31) undergoes the addition of two equivalents of corresponding Grignard reagent to afford phenol 32 in 75% yield (Fig. 4.20). This material was subsequently elaborated by Mejorado in three steps (61% yield) to the corresponding 2,5-chiral cyclohexadienone 33, which was ultimately transformed into ( + )-rishirilide B (34).22... [Pg.100]

Miniaturized columns have provided a decisive advantage in speed. Uracil, phenol, and benzyl alcohol were separated in 20 seconds by CEC in an 18 mm column with a propyl reversed phase.29 A19 cm electrophoretic channel was etched into a glass wafer, filled with a y-cyclodextrin buffer, and used to resolve chiral amino acids from a meteorite in 4 minutes.30 A 6 cm channel equipped with a syringe pump to automate sample derivatization was used to separate amino acids modified with fluorescein isothiocyanate.31 Nanovials have been used to perform tryptic digests on the 15 nL scale for subsequent separation on capillary Electrophoresis.32 A microcolumn has also been used to generate fractions representing time-points of digestion from a 40 pL sample.33 A disposable nanoelectrospray emitter has been... [Pg.429]

The drug candidate 1 was prepared from chiral cyclopentanol 10 as shown in Scheme 7.3. Reaction of 10 with racemic imidate 17, prepared from the corresponding racemic benzylic alcohol, in the presence of catalytic TfOH furnished a 1 1 mixture of diastereomers 18 and 19 which were only separated from one another by careful and tedious chromatography. Reduction of ester 18 with LiBH4 and subsequent Swern oxidation gave aldehyde 20 in 68% yield. Reductive animation of 20 with (R)-ethyl nipecotate L-tartrate salt 21 and NaBH(OAc)3 and subsequent saponification of the ester moiety yielded drug candidate 1. [Pg.193]

In order to prepare multi-kilogram quantities of 1 our efforts were strictly focused on the development of an asymmetric route. Our retrosynthetic approach was centered on the preparation of cyclopentenone 27 which, we envisioned, could be elaborated to chiral hydroxy acid 26 through a series of asymmetric transformations (Scheme 7.4). Etherification of the hydroxy group of 26 with benzylic alcohol 25 followed by installation of (P)-nipecotate 23 at the acid position of 24, would furnish the drug candidate 1. This section will address the following ... [Pg.194]

In a related study involving structurally similar chiral methylzinc anisyl fencholates, both chiral amplification and depletion were observed in the catalytic alkylations of benzaldehyde.209 Thus, methylzinc anisyl fencholates, bearing sterically small substituents in the ortho-position of the anisyl group, crystallized preferentially as homochiral dimers, as shown for the methyl-substituted anisyl group in Scheme 91. Because of the greater stability of the homochiral dimers, scalemic mixtures of both enantiomers of the ligand showed a chiral depletion of the benzyl alcohol. [Pg.373]

A chiral bis(oxazolinyl)phenylrhodium complex was found to catalyze the asymmetric hydrosilylation of styrenes with hydro(alkoxy)silanes such as HSiMe(OEt)2 (Scheme 7).47 Although the regioselectivity in forming branched product 27 is modest, the enantiomeric purity of the branched product 27 is excellent for styrene and its derivatives substituted on the phenyl group. The hydrosilylation products were readily converted into the corresponding benzylic alcohols 29 (up to 95% ee) by the Tamao oxidation. [Pg.821]

Enantioselective addition of R2Zn to aldehydes. Corey and Hannon2 have prepared the diamino benzylic alcohol 1 from (S)-proline and (lS,2R)-( + )-ephed-rine and report that the chelated lithium salt of 1 is an effective catalyst for enantioselective addition of diethylzinc to aromatic aldehydes. Thus benzaldehyde can be converted into (S)-( - )-3 with 95% ee, via an intermediate tridentate lithium complex such as 2 formed from 1. Similar reactions, but catalyzed by diastereomers of 1, show that the chirality of addition of dialkylzincs to aldehydes is controlled by the chirality of the benzylic alcohol center of 1. [Pg.159]

In contrast to phenolic hydroxyl, benzylic hydroxyl is replaced by hydrogen very easily. In catalytic hydrogenation of aromatic aldehydes, ketones, acids and esters it is sometimes difficult to prevent the easy hydrogenolysis of the benzylic alcohols which result from the reduction of the above functions. A catalyst suitable for preventing hydrogenolysis of benzylic hydroxyl is platinized charcoal [28], Other catalysts, especially palladium on charcoal [619], palladium hydride [619], nickel [43], Raney nickel [619] and copper chromite [620], promote hydrogenolysis. In the case of chiral alcohols such as 2-phenyl-2-butanol hydrogenolysis took place with inversion over platinum and palladium, and with retention over Raney nickel (optical purities 59-66%) [619]. [Pg.79]

It has been demonstrated that in Bi(OTf)3-catalyzed alkylation reactions the optical activity of enantiopure benzyl alcohols is lost and a racemic product is isolated. This can be explained by a SA-l-type reaction mechanism and the existence of a carbocationic intermediate. However, diastereoselective substitutions of benzyl alcohols with a chiral centre in close neighborhood to the electrophilic carbon should be feasible (Scheme 23). [Pg.131]

The concept of a diastereoselective Friedel-Crafts alkylation of a-chiral benzyl alcohols was first examined by Bach and coworkers [62, 63]. The initial protocol required stoichiometric amounts of strong Brpnsted acids like HBF4 and was followed by a more valuable methodology in which catalytic amounts of AuC L were employed for the diastereoselective functionalization of chiral benzyl alcohols [64], Beside arenes, allyl silanes, 2,4-pentanediones and silyl enol ethers have been used as nucleophiles. Depending on the diastereodiscriminating group and on the catalyst (Brpnsted or Lewis acid), the authors observed either the syn or the anti diastereoisomer as the major product. [Pg.131]

The enantiomeric purity is determined by chiral stationary phase, supercritical fluid chromatographic (CSP-SFC) analysis (Berger Instruments, Daicel Co. CHIRALCEL OD column 4% methanol, 180 psi, 3.0 mUmin flow rate detection at 220 nm). Racemic 1-phenylpropanol exhibited base-line separation of peaks of equal intensity arising from the R-isomer (tp, 2.74 min) and the S-isomer (tp, 3.10 min) whereas the synthetic alcohol showed these peaks in the ratio 97.7 / 2.3. This chromatographic method allowed for identification of the trace contaminants propiophenone (tp, 1.63 min) and benzyl alcohol (tp 3.40 min). [Pg.218]

Primary alcohols were oxidised to aldehydes and (less readily) secondary alcohols to ketones by Ru(N0)Cl(salen = )/03//UV (incandescent or halogen lamp), hi competitive experiments between 1- and 2-decanol or benzyl alcohols only the primary alcohol was oxidised [827]. With Ru(NO)Cl(salen )/(Cl2pyNO) or TMPNO or Oj/C H /UV (TMPNO=tetra-methylpyridine-iV,iV -oxide) racemic secondary alcohols were asymmetrically oxidised to ketones [828]. A Ru(NO)(salen " ) complex was used as Ru(N0)Cl(salen " )/02/UV/CgH3Cl to oxidise racemic secondary alcohols to the ketones in the presence of l,3-bis(p-bromophenyl)propane-l,3-dione e.e. of 55-99% were achieved [829], Chiral Ru(NO)Cl(salen ) complexes were made... [Pg.90]

Reduction of (S)-pinanediol [phenyl(chloro)methyl]boronate with commercially available lithium triethylborodeuteride yields a chirally deuterated benzylboronic ester. Deboronation of the deuterated benzylboronic ester with hydrogen peroxide yields chirally deuterated benzyl alcohol in 96-98% ee70. The conversion of the deuterated benzylboronic ester to chirally deuterated phenylalanine has also been accomplished (Section 1.1.2.1.4.2.). [Pg.1097]

One of the early syntheses of orlistat (1) by Hoffmann-La Roche utilized the Mukaiyama aldol reaction as the key convergent step. Therefore, in the presence of TiCU, aldehyde 7 was condensed with ketene silyl acetal 8 containing a chiral auxiliary to assemble ester 9 as the major diastereomer in a 3 1 ratio. After removal of the amino alcohol chiral auxiliary via hydrolysis, the a-hydroxyl acid 10 was converted to P-lactone 11 through the intermediacy of the mixed anhydride. The benzyl ether on 11 was unmasked via hydrogenation and the (5)-7V-formylleucine side-chain was installed using the Mitsunobu conditions to fashion orlistat (1). [Pg.152]

In the second step, achiral 9-borabicyclo[3.3.l]nonane (9-BBN) adds to the less hindered diastereotopic face of a-pinene to yield the chiral reducing agent Alpine-Borane. Aldehydes are rapidly reduced to alcohols. The reaction with deuterio-Alpine-Borane, which yields (J )-a-fi -benzyl alcohol in 98% enantiomeric excess (ee) reveals a very high degree of selectivity of the enantiotopic faces of the aldehyde group in a crowded transition state ... [Pg.12]

In a study involving the superacid-catalyzed reaction of amino-alcohols, a chiral, dicationic electrophile was observed by low temperature 13C NMR.31 Ionization of benzylic alcohols in superacids can generate stable carbocations, such as the trityl cation. Because of the resonance stabilization of the carbocationic centers, they are fairly weak electrophiles, incapable of reacting with benzene (eq 31). However, it was shown that adjacent ammonium groups can increase the electrophilic reactivities of the diphenylethyl cations (eq 32). [Pg.37]

Cr(CO)3 coordinates from either the top or bottom side of aromatic rings, bearing two different substituents in ortho or meta position, so that the enantiomers 285 and 286 are obtained. Optical resolution of the enantiomers is carried out by recrystallization, or column chromatography. The racemic complex of benzyl alcohol derivative 287 was separated to 288 and 289 by lipase-catalysed acetylation [68]. Enzymes recognize Cr(CO)3 as a bulky group. Chiral Cr(CO)3-arene complexes are used for asymmetric synthesis [68a]. [Pg.384]

When aldehyde 11 was reacted with z -Pr2Zn in the presence of chiral (S)-benzyl alcohol-a-d, (fi)-alkanol 12 with 96% ee was obtained with a yield of 95%. On the other hand, in the presence of (fi)-deuterated alcohol (> 95% ee), (S)-12 with 95% ee was obtained in 98% yield. Thus, (S)- and (fi)-benzyl alcohol-a-d acted as chiral inducers to give (R)- and (S)-pyrimidyl alkanols with high ee after consecutive asymmetric autocatalysis, respectively. [Pg.26]

In an alternative application of asymmetric alcohol oxidation, Rychnovsky has reported the use of the chiral nitroxyl radical 34 (Fig. 12.14) along with bleach, allowing kinetic resolution of secondary alcohols [89]. The best substrates were simple benzylic alcohols, for which S factors (= ks/kR) were in the range 3.9 to 7.1 (Scheme 12.22). Other chiral C2-symmetric nitroxyl radicals reported recently give lower selectivities [90]. [Pg.420]


See other pages where Benzylic alcohols chiral is mentioned: [Pg.217]    [Pg.217]    [Pg.111]    [Pg.22]    [Pg.62]    [Pg.276]    [Pg.205]    [Pg.379]    [Pg.95]    [Pg.283]    [Pg.12]    [Pg.222]    [Pg.270]    [Pg.257]    [Pg.11]    [Pg.448]    [Pg.140]    [Pg.33]    [Pg.185]    [Pg.146]    [Pg.561]    [Pg.185]    [Pg.35]    [Pg.101]    [Pg.187]    [Pg.170]    [Pg.3493]    [Pg.461]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Alcohol benzylation

Alcohols benzyl alcohol

Alcohols chiral

Benzyl alcohol

Benzylation benzyl alcohol

Benzylic alcohols

© 2024 chempedia.info