Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution diastereoselection

Oxazoline formation from 5-vinyloxazolidinones promoted by palladium (0) is also known. Oxidative insertion of palladium with loss of CO2 results in a pair of equihbrating 71-allyl palladium complexes. The stereochemistry of the vinyl group is therefore not important. Ring closure from the thermodynamically more stable transition state accounts for the trans-isomer as the major product. Depending on the exact substitution, diastereoselectivities ranging from 2.5 1 to 16 1 can be obtained (Scheme 8.68). [Pg.404]

Dioxolanes, carbonitrile oxide-substituted, diastereoselection of cycloadditions, 60, 284-5... [Pg.379]

Allylic acetoxy groups can be substituted by amines in the presence of Pd(0) catalysts. At substituted cyclohexene derivatives the diastereoselectivity depends largely on the structure of the palladium catalyst. Polymer-bound palladium often leads to amination at the same face as the aoetoxy leaving group with regioselective attack at the sterically less hindered site of the intermediate ri -allyl complex (B.M. Trost, 1978). [Pg.164]

The prochiral meso form of 2-cyclopenlen-1,4-diol (101) reacts with the (Z)-alkenyl iodide 102 to give the 3-substituted cyclopentanone 103 with nearly complete diastereoselectivity (98 2)[92], The reaction is used for the synthesis of prostaglandin. The alkenyl iodide 102 must be in the Z form in order to obtain the high diastereoselectivity. The selectivity is low when the corresponding (Z)-alkenyl iodide is used[93]. [Pg.143]

Substitution on the phenethyl side chain of the substrate is usually well tolerated. For example, reaction of carbamate 44 with POCI3 afforded a 75% yield of the corresponding lactam 45. However, in some instances substituents on the chain lead to low yields, such as in the reaction of amide 46, which provided only a 29% yield of the desired product 47 (albeit with 9 1 diastereoselectivity). ... [Pg.382]

Copper-mediated Diastereoselective Conjugate Addition and Allylic Substitution Reactions... [Pg.188]

Conjugate addition reactions of acyclic Midiael acceptors possessing betetoatom-SLibstituted stereogenic centers in tlieir )>-positions may provide usefiil levels of diastereoselectivity. A typical example is given witli tlie y-alkoxy-substituted enoate 49 in Sdieme 6.8 [17]. High levels of diastereoselectivity in favor of tlie anii addition product SO were found in tlie course of dlmediylcuprate addition. [Pg.192]

To acliieve diastereoselectivity in tlie course of allylic substitution, tlie cnnitoliing cliital inforniation may not only reside in tlie substtate skeleton but may also be pan of tlie allylic leaving group. Tlius, a cliital carbamate bas been developed as a... [Pg.217]

The enantiomers are obtained as a racemic mixture if no asymmetric induction becomes effective. The ratio of diastereomers depends on structural features of the reactants as well as the reaction conditions as outlined in the following. By using properly substituted preformed enolates, the diastereoselectivity of the aldol reaction can be controlled. Such enolates can show E-ot Z-configuration at the carbon-carbon double bond. With Z-enolates 9, the syn products are formed preferentially, while fi-enolates 12 lead mainly to anti products. This stereochemical outcome can be rationalized to arise from the more favored transition state 10 and 13 respectively ... [Pg.7]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

The diastereoselectivity is observed in the Henry reaction using optical active niti o compounds or a-heteroatom substituted aldehydes. Lor example, the reaction of O-benzyl-D-lactal-dehyde with methyl 3-niti opropionate in the presence of neubal alumina leads to a mixture of three niti o-aldol products from which D-ribo isomer is isolated by direct crystallization. D-Ribo... [Pg.61]

The synthetic problem is now reduced to cyclopentanone 16. This substance possesses two stereocenters, one of which is quaternary, and its constitution permits a productive retrosynthetic maneuver. Retrosynthetic disassembly of 16 by cleavage of the indicated bond furnishes compounds 17 and 18 as potential precursors. In the synthetic direction, a diastereoselective alkylation of the thermodynamic (more substituted) enolate derived from 18 with alkyl iodide 17 could afford intermediate 16. While trimethylsilyl enol ether 18 could arise through silylation of the enolate oxygen produced by a Michael addition of a divinyl cuprate reagent to 2-methylcyclopentenone (19), iodide 17 can be traced to the simple and readily available building blocks 7 and 20. The application of this basic plan to a synthesis of racemic estrone [( >1] is described below. [Pg.162]

The stereochemical outcome of nucleophilic addition reactions to cyclic ketones is the subject of numerous experimental and theoretical studies, with substituted cyclohexanones and cy-clopcntanones having been intensively studied. In addition reactions to substituted cyclohexanones 1 the problem of simple diastereoselectivity is manifested in the predominance of cither axial attack of a nucleophile, leading to the equatorial alcohol 2 A. or equatorial attack of the nucleophile which leads to the axial alcohol 2B. [Pg.7]

Similar to cyclohexanones, substituted cyclopentanones also adopt a conformation with the substituents in a sterically favorable position. In the case of 2-substituted cyclopentanones 1 the substituent occupies a pseudoequatorial position and the diastereoselectivity of nucleophilic addition reactions to 1 is determined by the relative importance of the interactions leading to predominant fra s(equatorial) or cw(axial) attack of the nucleophile. When the nucleophile approaches from the cis side, steric interaction with the substituent at C-2 is encountered. On the other hand, according to Felkin, significant torsional strain between the pseudoaxial C-2—H bond and the incipient bond occurs if the nucleophile approaches the carbonyl group from the trans side. [Pg.14]

Generally, in contrast to 2-substituted cyclopentanones, the diastereoselectivity of addition reactions to 3-substituted cyclopentanones is nearly independent of the nucleophile and the substituent in the 3-position. Thus, addition of various Grignard reagents, including ethynyl reagents, to 3-methyl- and 3-ferf-butylcyclopentanone leads to almost the same ratio of diastereomers (Table 3)3,4 6, 27,2s... [Pg.15]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

Methylmagnesium chloride has been added to various d-(4-substituted-phenyl) <5-oxo esters 15 (X = H, Cl 13, F, Cl, Br, OC11,) which provides the diastereomeric -lactones 1642. The electronic properties of the phenyl 4-substituent have no significant influence on the diastereoselectivity. Except for the 4-methoxyphenyl compound, which is unreactive even at 60 °C, a ratio of ca. 40 60 in favor of the anti-Cram product is observed at 60 "C in tetrahydrofuran as reaction solvent. Lowering the reaction temperature to 0 °C slightly increases the anti-Cram selectivity in the case of the 4-fluoro-, 4-chloro-, and 4-bromo-substituted compounds. On the other hand, a complete loss of reactivity is observed with the <5-phenyl- and <5-(4-methylphenyl)-substituted h-oxo esters. [Pg.44]

The addition of vinylmagnesium bromide to methyl (S)-3-benzyloxy-4-oxobutanoate (5) in tetrahydrofuran proceeded with a slight preference for the nonchelation-controlled reaction product (40 60)5°. A reversal of the diastereoselectivity (80 20) could be observed when the Grignard reagent, as a solution in tetrahydrofuran, was added to a dichloromethane solution of the aldehyde which had been precomplexed with one equivalent of magnesium bromide. The almost exclusive formation of the chelation-controlled reaction product 6 was achieved when tetrahydrofuran was completely substituted by dichloromethane the presence of tetrahydrofuran interferes with the formation of the chelate complex, which is a prerequisite for high chelation-controlled diastereoselection. [Pg.48]

Besides simple alkyl-substituted sulfoxides, (a-chloroalkyl)sulfoxides have been used as reagents for diastereoselective addition reactions. Thus, a synthesis of enantiomerically pure 2-hydroxy carboxylates is based on the addition of (-)-l-[(l-chlorobutyl)sulfinyl]-4-methyl-benzene (10) to aldehydes433. The sulfoxide, optically pure with respect to the sulfoxide chirality but a mixture of diastereomers with respect to the a-sulfinyl carbon, can be readily deprotonated at — 55 °C. Subsequent addition to aldehydes afforded a mixture of the diastereomers 11A and 11B. Although the diastereoselectivity of the addition reaction is very low, the diastereomers are easily separated by flash chromatography. Thermal elimination of the sulfinyl group in refluxing xylene cleanly afforded the vinyl chlorides 12 A/12B in high chemical yield as a mixture of E- and Z-isomers. After ozonolysis in ethanol, followed by reductive workup, enantiomerically pure ethyl a-hydroxycarboxylates were obtained. [Pg.138]

With reagent-induced diastereoselectivity. d 3-Substituted reagent with simple diastereoselectivity. [Pg.221]


See other pages where Substitution diastereoselection is mentioned: [Pg.327]    [Pg.311]    [Pg.314]    [Pg.31]    [Pg.309]    [Pg.75]    [Pg.105]    [Pg.216]    [Pg.88]    [Pg.295]    [Pg.296]    [Pg.171]    [Pg.392]    [Pg.701]    [Pg.760]    [Pg.764]    [Pg.25]    [Pg.32]    [Pg.33]    [Pg.121]    [Pg.336]    [Pg.9]    [Pg.14]    [Pg.24]    [Pg.29]    [Pg.42]    [Pg.57]    [Pg.65]    [Pg.100]    [Pg.136]    [Pg.187]   
See also in sourсe #XX -- [ Pg.917 ]




SEARCH



Alcohols diastereoselective substitutions

Allyl-substituted alkenes, diastereoselective epoxidations

Diastereoselectivity substitution

Diastereoselectivity, substituted anomeric

Diastereoselectivity, substituted anomeric radicals

© 2024 chempedia.info