Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Behavior of additive

Additives for Improving the Cold Behavior of Diesel Fuel (Coley, 1989)... [Pg.353]

The nature of these paraffins and their concentration in diesel fuel affect the three temperatures that characterize the cold behavior. The cloud point is the temperature at which crystals of paraffins appear when the temperature is lowered. The cold filter pluming point is defined as the temperature under which a suspension no ionger flows through a standard filter. Finally, the pour point is the temperature below which the diesel fuel no longer flows by simple gravity in a standard tube. These three temperatures are defined by regulations and the refiner has three types of additives to improve the quality of the diesel fuel of winter. [Pg.353]

Although lubricant base stocks have been subjected to dewaxing processes, they still contain large amounts of paraffins that result in a high pour point for the oil. In the paragraph on the cold behavior of diesel fuels, additives were mentioned that modify the paraffin crystalline system and oppose the precipitation of solids. [Pg.357]

We have considered the surface tension behavior of several types of systems, and now it is desirable to discuss in slightly more detail the very important case of aqueous mixtures. If the surface tensions of the separate pure liquids differ appreciably, as in the case of alcohol-water mixtures, then the addition of small amounts of the second component generally results in a marked decrease in surface tension from that of the pure water. The case of ethanol and water is shown in Fig. III-9c. As seen in Section III-5, this effect may be accounted for in terms of selective adsorption of the alcohol at the interface. Dilute aqueous solutions of organic substances can be treated with a semiempirical equation attributed to von Szyszkowski [89,90]... [Pg.67]

J. R. Ganc and R. Nagarajan, Aggregation Behavior of Common Motor Oil Additives, in International Fuels and Lubricants Meeting, Toronto, Canada, 1991. [Pg.498]

Many complex systems have been spread on liquid interfaces for a variety of reasons. We begin this chapter with a discussion of the behavior of synthetic polymers at the liquid-air interface. Most of these systems are linear macromolecules however, rigid-rod polymers and more complex structures are of interest for potential optoelectronic applications. Biological macromolecules are spread at the liquid-vapor interface to fabricate sensors and other biomedical devices. In addition, the study of proteins at the air-water interface yields important information on enzymatic recognition, and membrane protein behavior. We touch on other biological systems, namely, phospholipids and cholesterol monolayers. These systems are so widely and routinely studied these days that they were also mentioned in some detail in Chapter IV. The closely related matter of bilayers and vesicles is also briefly addressed. [Pg.537]

Completely ah initio predictions can be more accurate than any experimental result currently available. This is only true of properties that depend on the behavior of isolated molecules. Colligative properties, which are due to the interaction between molecules, can be computed more reliably with methods based on thermodynamics, statistical mechanics, structure-activity relationships, or completely empirical group additivity methods. [Pg.121]

A number of methods fill the valence of the interface atoms with an extra orbital, sometimes centered on the connecting MM atom. This results in filling out the valence while requiring a minimum amount of additional CPU time. The concern, which is dilficult to address, is that this might still affect the chemical behavior of the interface atom or even induce a second atom affect. [Pg.202]

Before concluding this section, there is one additional thermodynamic factor to be mentioned which also has the effect of lowering. Since we shall not describe the thermodynamics of polymer solutions until Chap. 8, a quantitative treatment is inappropriate at this point. However, some relationships familiar from the behavior of low molecular weight compounds may be borrowed for qualitative discussion. The specific effect we consider is that of chain ends. The position we take is that they are foreign species from the viewpoint of crystallization. [Pg.217]

Antioxidants have been shown to improve oxidative stabiHty substantially (36,37). The use of mbber-bound stabilizers to permit concentration of the additive in the mbber phase has been reported (38—40). The partitioning behavior of various conventional stabilizers between the mbber and thermoplastic phases in model ABS systems has been described and shown to correlate with solubiHty parameter values (41). Pigments can adversely affect oxidative stabiHty (32). Test methods for assessing thermal oxidative stabiHty include oxygen absorption (31,32,42), thermal analysis (43,44), oven aging (34,45,46), and chemiluminescence (47,48). [Pg.203]

Flammability. The results of small-scale laboratory tests of plastic foams have been recognized as not predictive of their tme behavior in other fire situations (205). Work aimed at developing tests to evaluate the performance of plastic foams in actual fire situations continues. All plastic foams are combustible, some burning more readily than others when exposed to fire. Some additives (131,135), when added in small quantities to the polymer, markedly improve the behavior of the foam in the presence of small fire sources. Plastic foams must be used properly following the manufacturers recommendations and any appHcable regulations. [Pg.415]

Although aH these models provide a description of the rheological behavior of very dry foams, they do not adequately describe the behavior of foams that have more fluid in them. The shear modulus of wet foams must ultimately go to zero as the volume fraction of the bubbles decreases. The foam only attains a solid-like behavior when the bubbles are packed at a sufficiently large volume fraction that they begin to deform. In fact, it is the additional energy of the bubbles caused by their deformation that must lead to the development of a shear modulus. However, exactly how this modulus develops, and its dependence on the volume fraction of gas, is not fuHy understood. [Pg.430]

Some beehive ovens, having various improvements and additions of waste heat boilers, thereby allowing heat recovery from the combustion products, may stiU be in operation. Generally, however, the beehive oven has been replaced by waH-heated, horizontal chamber, ie, slot, ovens in which higher temperatures can be achieved as well as a better control over the quality of the coke. Modem slot-type coke ovens are approximately 15 m long, approximately 6 m high, and the width is chosen to suit the carbonization behavior of the coal to be processed. For example, the most common widths are ca 0.5 m, but some ovens may be as narrow as 0.3 m, or as wide as 0.6 m. [Pg.64]

Whereas there is no universally accepted specification for marketed natural gas, standards addressed in the United States are Hsted in Table 6 (8). In addition to these specifications, the combustion behavior of natural gases is frequently characteri2ed by several parameters that aid in assessing the influence of compositional variations on the performance of a gas burner or burner configuration. The parameters of flash-back and blow-off limits help to define the operational limits of a burner with respect to flow rates. The yeUow-tip index helps to define the conditions under which components of the natural gas do not undergo complete combustion, and the characteristic blue flame of natural gas burners begins to show yellow at the flame tip. These... [Pg.172]

Lubricants. Petroleum lubricants continue to be the mainstay for automotive, industrial, and process lubricants. Synthetic oils are used extensively in industry and for jet engines they, of course, are made from hydrocarbons. Since the viscosity index (a measure of the viscosity behavior of a lubricant with change in temperature) of lube oil fractions from different cmdes may vary from +140 to as low as —300, additional refining steps are needed. To improve the viscosity index (VI), lube oil fractions are subjected to solvent extraction, solvent dewaxing, solvent deasphalting, and hydrogenation. Furthermore, automotive lube oils typically contain about 12—14% additives. These additives maybe oxidation inhibitors to prevent formation of gum and varnish, corrosion inhibitors, or detergent dispersants, and viscosity index improvers. The United States consumption of lubricants is shown in Table 7. [Pg.367]

Radicals are employed widely in the polymer industry, where their chain-propagating behavior transforms vinyl monomers into polymers and copolymers. The mechanism of addition polymeri2ation involves all three types of reactions discussed above, ie, initiation, propagation by addition to carbon—carbon double bonds, and termination ... [Pg.219]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

The addition of paramagnetic species, such as the metal ions Cu ", Mn, or CF", can have dramatic effects on both the observed spectmm and the relaxation behavior of a molecule. The added ion reduces nuclear relaxation times, and permitting more rapid data collection. In addition, faster relaxation rates minimize NOE effects in the spectra, which can be useful in obtaining quantitative intensity data. The most widely used reagent for this purpose is chromium acetylacetonate [13681 -82-8] known as Cr(acac)2. Practically speaking, the use of such reagents requires care, because at... [Pg.403]

The BWR water chemistry parameters are given in Table 4 (19). Originally, no additives were made to feedwater—condensate or the primary water. The radiolytic decomposition of the fluid produced varying concentrations of O2 in the reactor vessel, ranging from about 200 ppb O2 in the reactor recirculation water to about 20 ppm O2 in the steam. Stoichiometric amounts of hydrogen were also produced, ie, 2 mL for each mL of O2. Feedwater O2 was about 30 ppb, hence the radiolytic decomposition of the water was a primary factor in determining the behavior of materials in the primary system and feedwater systems. [Pg.195]


See other pages where Behavior of additive is mentioned: [Pg.256]    [Pg.111]    [Pg.146]    [Pg.3]    [Pg.213]    [Pg.545]    [Pg.2184]    [Pg.356]    [Pg.99]    [Pg.4]    [Pg.470]    [Pg.89]    [Pg.256]    [Pg.111]    [Pg.146]    [Pg.3]    [Pg.213]    [Pg.545]    [Pg.2184]    [Pg.356]    [Pg.99]    [Pg.4]    [Pg.470]    [Pg.89]    [Pg.562]    [Pg.168]    [Pg.1]    [Pg.73]    [Pg.126]    [Pg.313]    [Pg.292]    [Pg.377]    [Pg.452]    [Pg.404]    [Pg.413]    [Pg.415]    [Pg.115]    [Pg.191]    [Pg.388]    [Pg.202]    [Pg.334]    [Pg.190]   


SEARCH



© 2024 chempedia.info