Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarization batteries

Now let us suppose that the battery polarity is reversed, and + is attached to the N-type half of the diode, as in Fig. 14.2. The current will be close to zero, and for practical purposes we can consider the diode to be an insulator. The reason is that both the electrons and the holes are attracted away from the junction, leaving what is called a "depletion zone," or "depletion region." This material has no "charge carriers" in either the conduction band or the valence band, so it is an insulator. All the electrons in the valence band, within that volume of silicon, would have to move at exactly the same time, so they essentially don t move at all. [Pg.150]

The reactivity of lithium in aqueous solutions requires the use of nonaqueous electrolytes for lithium anode batteries. Polar organic hquids are the most common electrolyte solvents for the active primary cells, except for the thionyl ehloride (SOCy and sulfuryl chloride (SO2CI2) cells, where these inorganie compounds serve as both the solvent and the active cathode material. The important properties of the eleetrolyte are ... [Pg.332]

Activation Polarization That part of electrode or battery polarization arising from the charge-transfer step of the electrode reaction. [Pg.1380]

The metallic salts of trifluoromethanesulfonic acid can be prepared by reaction of the acid with the corresponding hydroxide or carbonate or by reaction of sulfonyl fluoride with the corresponding hydroxide. The salts are hydroscopic but can be dehydrated at 100°C under vacuum. The sodium salt has a melting point of 248°C and decomposes at 425°C. The lithium salt of trifluoromethanesulfonic acid [33454-82-9] CF SO Li, commonly called lithium triflate, is used as a battery electrolyte in primary lithium batteries because solutions of it exhibit high electrical conductivity, and because of the compound s low toxicity and excellent chemical stabiUty. It melts at 423°C and decomposes at 430°C. It is quite soluble in polar organic solvents and water. Table 2 shows the electrical conductivities of lithium triflate in comparison with other lithium electrolytes which are much more toxic (24). [Pg.315]

The physical picture in concentrated electrolytes is more apdy described by the theory of ionic association (18,19). It was pointed out that as the solutions become more concentrated, the opportunity to form ion pairs held by electrostatic attraction increases (18). This tendency increases for ions with smaller ionic radius and in the lower dielectric constant solvents used for lithium batteries. A significant amount of ion-pairing and triple-ion formation exists in the high concentration electrolytes used in batteries. The ions are solvated, causing solvent molecules to be highly oriented and polarized. In concentrated solutions the ions are close together and the attraction between them increases ion-pairing of the electrolyte. Solvation can tie up a considerable amount of solvent and increase the viscosity of concentrated solutions. [Pg.509]

The exchange current is directiy related to the reaction rate constant, to the activities of reactants and products, and to the potential drop across the double layer. The larger the more reversible the reaction and, hence, the lower the polarization for a given net current flow. Electrode reactions having high exchange currents are favored for use in battery apphcations. [Pg.511]

Whenever the local concentration of a reacting component in a battery departs significantly from its equiUbrium value, the rate of reaction becomes controlled by the transport of that component to the reaction site. The polarization resulting from these concentration changes Tj is given by ... [Pg.512]

Fig. 6. Discharge behavior of a battery where is the open circuit voltage (a) current—potential or power curve showing M activation, ohmic, and M concentration polarization regions where the double headed arrow represents polarization loss and (b) voltage—time profile. Fig. 6. Discharge behavior of a battery where is the open circuit voltage (a) current—potential or power curve showing M activation, ohmic, and M concentration polarization regions where the double headed arrow represents polarization loss and (b) voltage—time profile.
When a battery produces current, the sites of current production are not uniformly distributed on the electrodes (45). The nonuniform current distribution lowers the expected performance from a battery system, and causes excessive heat evolution and low utilization of active materials. Two types of current distribution, primary and secondary, can be distinguished. The primary distribution is related to the current production based on the geometric surface area of the battery constmction. Secondary current distribution is related to current production sites inside the porous electrode itself. Most practical battery constmctions have nonuniform current distribution across the surface of the electrodes. This primary current distribution is governed by geometric factors such as height (or length) of the electrodes, the distance between the electrodes, the resistance of the anode and cathode stmctures by the resistance of the electrolyte and by the polarization resistance or hinderance of the electrode reaction processes. [Pg.514]

Cell geometry, such as tab/terminal positioning and battery configuration, strongly influence primary current distribution. The monopolar constmction is most common. Several electrodes of the same polarity may be connected in parallel to increase capacity. The current production concentrates near the tab connections unless special care is exercised in designing the current collector. Bipolar constmction, wherein the terminal or collector of one cell serves as the anode and cathode of the next cell in pile formation, leads to gready improved uniformity of current distribution. Several representations are available to calculate the current distribution across the geometric electrode surface (46—50). [Pg.514]

Difficulties with the Na—S system arise ia part from the ceramic nature of the alumiaa separator the specific P-alumiaa is expeasive to prepare and the material is brittie and quite fragile. Separator failure is the leading cause of early cell failure. Cell failure may also be related to performance problems caused by polarization at the sodium/soHd electrolyte iaterface. Lastiy, seal leakage can be a determiaant of cycle life. In spite of these problems, however, the safety and rehabiUty of the Na—S system has progressed to the poiat where pilot plant production of these batteries is anticipated for EV and aerospace apphcations. [Pg.586]

Batteries. The shelf life of dry batteries (qv) is increased from 50 to 80% by the use of a few grams of zinc chromate or dichromate near the zinc anode. This polarizes the anode on open circuit but does not interfere with current deUvery. [Pg.149]

As shown in Fig. 8, three types of polarization exist during the discharge of porous MnOa. The battery active EMD or CMD (chemical manganese dioxide) is highly porous and the concentration polarization due to the pH change, r (ApH), is very important. Kozawa studied the three types of... [Pg.118]

The thin backweb, typically 0.2 mm thick with a porosity of 60 percent yields excellent electrical resistance values of 50 rafl cm2, permitting further optimization of high-performance battery constructions. These require very thin electrodes due to the overproportionally increasing polarization effects at higher current densities and consequently also low distances most modern versions have separators only 0.6 mm thick. Such narrow spacings enforce microporous separation ... [Pg.259]

The physicochemical properties of carbon are highly dependent on its surface structure and chemical composition [66—68], The type and content of surface species, particle shape and size, pore-size distribution, BET surface area and pore-opening are of critical importance in the use of carbons as anode material. These properties have a major influence on (9IR, reversible capacity <2R, and the rate capability and safety of the battery. The surface chemical composition depends on the raw materials (carbon precursors), the production process, and the history of the carbon. Surface groups containing H, O, S, N, P, halogens, and other elements have been identified on carbon blacks [66, 67]. There is also ash on the surface of carbon and this typically contains Ca, Si, Fe, Al, and V. Ash and acidic oxides enhance the adsorption of the more polar compounds and electrolytes [66]. [Pg.430]

In general, lithium-ion batteries are assembled in the discharged state. That is, the cathode, for example LqCoC, is filly intercalated by lithium, while the anode (carbon) is completely empty (not charged by lithium). In the first charge the anode is polarized in the negative direction (electrons are inserted into the carbon) and lithium cations leave the cathode, enter the solution, and are inserted into the carbon anode. This first charge process is very complex. On the basis of many reports it is presented schematically [6, 74, 76] in Fig. 5. The reactions presented in Fig. 5 are also discussed in Sec. 6.2.1, 6.2.2 and 6.3.5. [Pg.432]

Unfortunately, both lithium and the lithiated carbons used as the anode in lithium ion batteries (Li C, l>x>0) are thermodynamically unstable relative to solvent molecules containing polar bonds such as C-O, C-N, or C-S, and to many anions of lithium salts, solvent or salt impurities (such as water, carbon dioxide, or nitrogen), and intentionally added traces of reactive substances (additives). [Pg.479]

It follows that in batteries, the negative electrode is the anode and the positive electrode is the cathode. In an electrolyzer, to the contrary, the negative electrode is the cathode and the positive electrode is the anode. Therefore, attention must be paid to the fact that the concepts of anode and cathode are related only to the direction of current flow, not to the polarity of the electrodes in galvanic cells. [Pg.32]

Aprotic polar solvents such as those listed in Table 8.1 are widely used in electrochemistry. In solutions with such solvents the alkali metals are stable and will not dissolve under hydrogen evolution (by discharge of the proton donors) as they do in water or other protic solvents. These solvents hnd use in new types of electrochemical power sources (batteries), with hthium electrodes having high energy density. [Pg.129]

Electrochemical reactors (cells, tanks) are used for the practical realization of electrolysis or the electrochemical generation of electrical energy. In developing such reactors one must take into account the purpose of the reactor as well as the special features of the reactions employed in it. Most common is the classical reactor type with plane-parallel electrodes in which positive and negative electrodes alternate and all electrodes having the same polarity are connected in parallel. Reactors in which the electrodes are concentric cylinders and convection of the liquid electrolyte can be realized by rotation of one of the electrodes are less common. In batteries, occasionally the electrodes are in the form of two long ribbons with a separator in between which are wound up as a double spiral. [Pg.327]

In industrial electrochemical cells (electrolyzers, batteries, fuel cells, and many others), porous metallic or nonmetallic electrodes are often used instead of compact nonporous electrodes. Porous electrodes have large trae areas, S, of the inner surface compared to their external geometric surface area S [i.e., large values of the formal roughness factors y = S /S (parameters yand are related as y = yt()]. Using porous electrodes, one can realize large currents at relatively low values of polarization. [Pg.337]


See other pages where Polarization batteries is mentioned: [Pg.528]    [Pg.97]    [Pg.196]    [Pg.927]    [Pg.231]    [Pg.528]    [Pg.97]    [Pg.196]    [Pg.927]    [Pg.231]    [Pg.2521]    [Pg.246]    [Pg.362]    [Pg.505]    [Pg.512]    [Pg.514]    [Pg.515]    [Pg.526]    [Pg.532]    [Pg.578]    [Pg.147]    [Pg.494]    [Pg.233]    [Pg.395]    [Pg.240]    [Pg.336]    [Pg.422]    [Pg.442]    [Pg.33]    [Pg.272]    [Pg.305]    [Pg.307]    [Pg.308]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



Batteries polarity

© 2024 chempedia.info