Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic force microscopy copolymers

Annis B K, Noid D W, Sumpter B G, Reffner J R and Wunderlich B 1992 Application of atomic force microscopy (AFM) to a block copolymer and an extended chain polyethylene Makromol. Chem., Rapid. Commun. 13 169 Annis B K, Schwark D W, Reffner J R, Thomas E L and Wunderlich B 1992 Determination of surface morphology of diblock copolymers of styrene and butadiene by atomic force microscopy Makromol. Chem. 193 2589... [Pg.1727]

Puskas, J.E., Antony, P., Kwon, Y., Kovar, M., and Norton, P.R. Study of the surface morphology of polyisobutylene-based block copolymers by atomic force microscopy, J. Macromol. Sci., Macromol. Symp., 183, 191-197, 2002. [Pg.219]

Magonov, S.N., Elings, V., Cleveland, J., Denley, D., and Whangbo, M.-H., Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film, Surf. Sci., 389, 201, 1997. [Pg.577]

Diblock copolymers PEO-fo-PS have been prepared using PEO macroinitiator and ATRP techniques [125]. The macroinitiator was synthesized by the reaction of monohydroxy-functionalized PEO with 2-chloro-2-phenylacetyl-chloride. MALDI-TOF revealed the successful synthesis of the macroinitiators. The ATRP of styrene was conducted in bulk at 130 °C with CuCl as the catalyst and 2,2 bipyridine, bipy, as the ligand. Yields higher than 80% and rather narrow molecular weight distributions (Mw/Mn < 1.3) were obtained. The surface morphology of these samples was investigated by atomic force microscopy, AFM. [Pg.69]

We reported the synthesis of Si/Si02//PS-h-poly(acrylate) tethered diblock copolymer brushes [31,32,46,47]. The properties of these diblock brushes were studied using water contact angles, ellipsometry. X-ray photoelectron spectroscopy (XPS), FTIR spectroscopy and atomic force microscopy (AFM). For a sample with a 26 nm PS layer and a 9 nm PMMA layer, the advanc-... [Pg.137]

The morphology of this supramolecular diblock copolymer library has been investigated by means of atomic force microscopy (AFM) measurements. As illustrated in Fig. 21, at first glance different morphologies were obtained for different compositions. However, interpreting the phase behavior of supramolecular block copolymers is not straightforward. There are several important parameters that play a role in the phase behavior. For instance, the amorphous phase of PEG, the crystalline phase of PEG, the metal complex, and the amorphous PSt contribute to... [Pg.54]

Fig. 21 Atomic force microscopy (AFM) phase images of all block copolymers in the library after spin coating from 2% w/v solution in toluene. No annealing has been performed. The scale bar represents 100 nm. (Reprinted with permission from [78]. Copyright (2005) Royal Society of Chemistry)... Fig. 21 Atomic force microscopy (AFM) phase images of all block copolymers in the library after spin coating from 2% w/v solution in toluene. No annealing has been performed. The scale bar represents 100 nm. (Reprinted with permission from [78]. Copyright (2005) Royal Society of Chemistry)...
The effect on structure of confining block copolymers in thin films has been examined, largely using neutron reflectivity and atomic force microscopy. A number of features that result from the constraint of reduced dimensionality have been reported, such as the observation of islands and holes at the surface... [Pg.5]

Fig. 2.55 (a) Atomic force microscopy image (constant force mode) of islands at the surface of a PS PUMA diblock (M = 82 kg mol1) copolymer film (Maaloum et al. 1992). The height of the islands is 310A. (b) Section of one domain with a diameter of Afim. (c) Assumed structure at the domain edge. [Pg.110]

Hahm J et al (1998) Defect evolution in ultrathin films of polystyrene-block-polymethylmethacrylate diblock copolymers observed by atomic force microscopy. J Chem Phys 109(23) 10111-10114... [Pg.31]

Combining the surface dynamic moduli measurements with the morphologies of the LB transferred block copolymer films imaged by atomic force microscopy... [Pg.196]

Figure 3.29 shows atomic force microscopy (AFM) images for the three copolymers, GE-1, GE-2, and GE-3 at low and high concentrations.(From ref. [132]). [Pg.198]

Regarding the spatial aspects of the enzymatic degradation of CA-g-PLLA, a surface characterization [30] was carried out for melt-molded films by atomic force microscopy (AFM) and attenuated total-reflection Fourier-transform infrared spectroscopy (ATR-FTIR) before and after the hydrolysis test with proteinase K. As exemplified in Fig. 3 for a copolymer of MS = 22, the AFM study showed that hydrolysis for a few weeks caused a transformation of the original smooth surface of the test specimen (Fig. 3a) into a more undulated surface with a number of protuberances of 50-300 nm in height and less than a few micrometers in width (Fig. 3b). The ATR-FTIR measurements proved a selective release of lactyl units in the surface region of the hydrolyzed films, and the absorption intensity data monitored as a function of time was explicable in accordance with the AFM result. [Pg.106]

Infrared spectra of the unfilled and filled copolymers were measured using a Perkin-Elmer model 1700 FTIR spectrometer. The 13C CP/MAS NMR measurements were conducted on a Bruker 300 instrument operating at 75.51 MHz. The samples were rotated with a spectra width of 40.0 Hz, the CP time was 5 ms. l3C lI distortionless enhancement by polarization transfer (DEPT) technique was applied for analysis of monomers. The process was performed at 75.51 MHz, rotated with a spectral width of 0.75 Hz and a CP time of 15 ms. Atomic force microscopy measurements were carried out using a Nanoscope Ilia controlled Dimension 3000 AFM (Digital Instrument, Santa Barbara, CA). [Pg.105]

Demonstier-Champagne et al. used atomic force microscopy (AFM) to observe microphase separation within cast films of PS-PMPS-PS/ PS-PMPS block copolymer mixtnre [43] that were nsed to compatibilize a blend of PMPS and PS. The fractnre snrface of blend films with the block copolymer incorporated show a far finer dispersion of particle sizes than those without. Matyjaszewski et al. studied PMPS-PS thin films by SFM (scanning force microscopy) and TEM (transmission electron microscopy) and Fig. 8 shows a TEM picture of a thin section of a film which was prepared by slow evaporation from THE, which is slightly selective for the polystyrene block [73]. [Pg.258]

Chen et al. [67,68] further extended the study of binary blends of ESI over the full range of copolymer styrene contents for both amorphous and semicrystalline blend components. The transition from miscible to immiscible blend behavior and the determination of upper critical solution temperature (UCST) for blends could be uniquely evaluated by atomic force microscopy (AFM) techniques via the small but significant modulus differences between the respective ESI used as blend components. The effects of molecular weight and molecular weight distribution on blend miscibility were also described. [Pg.619]


See other pages where Atomic force microscopy copolymers is mentioned: [Pg.358]    [Pg.204]    [Pg.219]    [Pg.56]    [Pg.452]    [Pg.22]    [Pg.39]    [Pg.31]    [Pg.91]    [Pg.160]    [Pg.356]    [Pg.179]    [Pg.445]    [Pg.348]    [Pg.172]    [Pg.221]    [Pg.293]    [Pg.10]    [Pg.108]    [Pg.208]    [Pg.325]    [Pg.107]    [Pg.130]    [Pg.18]    [Pg.79]    [Pg.148]    [Pg.139]    [Pg.104]    [Pg.111]    [Pg.189]    [Pg.231]    [Pg.4]    [Pg.293]    [Pg.208]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Atom Force Microscopy

Atomic force microscopy

Atomic force microscopy triblock copolymer images

© 2024 chempedia.info