Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers, confinement

Lattice Model Carlo simulations of a block copolymer confined between parallel hard walls by Kikuchi and Binder (1993,1994) revealed a complex interplay between film thickness and lamellar period. In the case of commensurate length-scales (f an integral multiple of d), parallel ordering of lamellae was observed. On the other hand, tilted or deformed lamellar structures, or even coexistence of lamellae in different orientations, were found in the case of large incommensurability. Even at temperatures above the bulk ODT, weak order was observed parallel to the surface and the transition from surface-induced order to bulk ordering was found to be gradual. The latter observations are in agreement with the experimental work of Russell and co-workers (Anastasiadis et al. 1989 Menelle et al. 1992) and Foster et al. (1992). [Pg.117]

Phase separation of polymer blends and block copolymers. Confining polymer blends and block copolymers between surfaces may influence the phase separation process, as a consequence of the preferential affinity of one of the components for the interface. Since the pioneer works of Reich and Cohen [26] and later by Nesterov et al. [27], Ball and Essery [28], and Jones [29] amongst others much work has been done to understand the mechanisms of phase separation in polymer thin films. The presence of substrate-film and/or film-air interfaces introduces an additional complexity compared to bulk phase separation processes [30-35]. Complex structures can be produced by slight differences on parameters... [Pg.6]

It is now firmly established that confinement of crystalline stems has a profound influence on crystallization in block copolymers. Confinement can resnlt from the presence of glassy domains or simply strong segregation between domains. In contrast crystallization can overwhelm microphase separation when a sample is cooled from a weakly segregated or homogeneons melt (152-154). The lamellar crystallites can then nncleate and grow heterogeneonsly to produce spherulites (152,155), whereas these are not observed when crystallization is confined to spheres or cylinders. [Pg.748]

Huinink HP, Brokken-Zijp JCM, van Dijk MA, Sevink GJA. Asymmetric block copolymers confined in a thin film. J Chem Phys 2000 112 2452... [Pg.296]

Few simulation studies have explored block copolymer confinement in complex multilevel topographical patterns. [Pg.246]

Turner gave the first theoretical treatment of the equilibrium behavior of a symmetric block copolymer confined between two identical parallel plates with preferential attraction of the plates to one block of the polymer.For the symmetric system, he found the formation of n number (A-B and B-A) lamellar layers aligned parallel to the plates. When the plate spacing corresponds to a half-odd integer number of layers, no fiustra-tion in spacing is observed. [Pg.12]

Well-defined nanoclusters (w 10-100 A diameter) of several metals have been prepared via the polymerization of metal-containing monomers. The synthetic approach involves the block copolymerization of a metallated norbornene with a hydrocarbon co-monomer which is used to form an inert matrix. Subsequent decomposition of the confined metal complex affords small clusters of metal atoms. For example, palladium and platinum nanoclusters may be generated from the block copolymerization of methyl tetracyclododecane (223) with monomers (224) and (225) respectively. 10,611 Clusters of PbS have also been prepared by treating the block copolymer of (223) and (226) with H2S.612 A similar approach was adopted to synthesize embedded clusters of Zn and ZnS 613,614... [Pg.33]

The mean-field SCFT neglects the fluctuation effects [131], which are considerably strong in the block copolymer melt near the order-disorder transition [132] (ODT). The fluctuation of the order parameter field can be included in the phase-diagram calculation as the one-loop corrections to the free-energy [37,128,133], or studied within the SCFT by analyzing stability of the ordered phases to anisotropic fluctuations [129]. The real space SCFT can also applied for a confined geometry systems [134], their dynamic development allows to study the phase-ordering kinetics [135]. [Pg.175]

Kim et al. have introduced silicon atoms in PPV block copolymers to confine the conjugation length and achieve blue EL materials. Copolymers 188-190 [215] and 191 [216] have been synthesized by Wittig-Horner and Knoevenagel condensation, respectively. The emission band in this series can be tuned between 410 and 520 nm, and ITO/polymer/Al PLEDs with turn-on voltages 7 V have been reported (Chart 2.41). [Pg.97]

The above approaches used the idea of conjugation length control in PTs by distorting the polymer backbone with bulky substituents as side groups. Hadziioannou and coworkers [509,510] demonstrated PL and EL tuning via exciton confinement with block copolymers... [Pg.199]

G.G. Malliaras, J.K. Herrema, J. Wildeman, R.H. Wieringa, R.E. Gill, S.S. Lampoura, and G. Hadziioannou, Tuning of the photo- and electroluminescence in multi-block copolymers of poly[(silanylene)-thiophene]s via exciton confinement, Adv. Mater., 5 721-723, 1993. [Pg.283]

Figure 1 shows the DSC cooling scan of iPP in the bulk after self-nucleation at a self-seeding temperature Ts of 162 °C (in domain II). The self-nucleation process provides a dramatic increase in the number of nuclei, such that bulk iPP now crystallizes at 136.2 °C after the self-nucleation process this means with an increase of 28 °C in its peak crystallization temperature. In order to produce an equivalent self-nucleation of the iPP component in the 80/20 PS/iPP blend a Ts of 161 °C had to be employed. After the treatment at Ts, the cooling from Ts shows clearly in Fig. 1 that almost every iPP droplet can now crystallize at much higher temperatures, i.e., at 134.5 °C. Even though the fractionated crystallization has disappeared after self-nucleation, it should also be noted that the crystallization temperature in the blend case is nearly 2 °C lower than when the iPP is in the bulk this indicates that when the polymer is in droplets the process of self-nucleation is slightly more difficult than when it is in the bulk. In the case of block copolymers when the crystallization is confined in nanoscopic spheres or cylinders it will be shown that self-nucleation is so difficult that domain II disappears. [Pg.26]

The technique of self-nucleation can be very useful to study the nucleation and crystallization of block copolymers that are able to crystallize [29,97-103]. Previous works have shown that domain II or the exclusive self-nucleation domain disappears for systems where the crystallizable block [PE, PEO or poly(e-caprolactone), PCL] was strongly confined into small isolated MDs [29,97-101]. The need for a very large number of nuclei in order to nucleate crystals in every confined MD (e.g., of the order of 1016 nuclei cm 3 in the case of confined spheres) implies that the amount of material that needs to be left unmolten is so large that domain II disappears and annealing will always occur to a fraction of the polymer when self-nucleation is finally attained at lower Ts. This is a direct result of the extremely high number density of MDs that need to be self-nucleated when the crystallizable block is confined within small isolated MDs. Although this effect has been mainly studied in ABC triblock copolymers and will be discussed in Sect. 6.3, it has also been reported in PS-fc-PEO diblock copolymers [29,99]. [Pg.39]

From this section we can summarize the general behavior of confined crystallizable MDs. These generalizations apply to block copolymers that are in the strong segregation regime and that can crystallize within their specific MD without breakout. When a block copolymer component crystallizes within isolated MD structures like spheres, cylinders or lamellae it may nucleate homogeneously. For homogeneous nucleation to take place, several requirements should be met ... [Pg.41]

The technique of self-nucleation [75] can be very useful to study the nucleation and crystallization of block copolymer components, as already mentioned in previous sections. In block copolymers, factors like the volumetric fraction and the degree of segregation affect the type of confinement and therefore modify the self-nucleation behavior. In the case of semicrystalline block copolymers, several works have reported the self-nucleation of either one or both crystallizable components in PS-fc-PCL, PS-b-PB-b-PCL, PS-b-PE-b-PCL, PB-fr-PIB-fr-PEO, PE-fr-PEP-fr-PEO, PS-fc-PEO, PS-h-PEO-h-PCL, PB-b-PEO, PB/PB-fc-PEO and PPDX-fc-PCL [29,92,98,99,101-103,134] and three different kinds of behavior have been observed. Specific examples of these three cases are given in the following and in Table 5 ... [Pg.64]

Several block copolymer systems have shown only domains I and III upon self-nucleation. This behavior is observed in confined crystallizable blocks as PEO in purified E24EP57EO1969 [29]. Crystallization takes place for the PEO block at - 27 °C after some weak nucleating effect of the interphase. Domain II is absent and self-nucleation clearly starts at Ts = 56 °C when annealed crystals are already present, i.e., in domain III (Fig. 17b). The absence of domain II is a direct consequence of the extremely high... [Pg.64]

Floudas et al. [135] also studied the isothermal crystallization of PEO and PCL blocks within PS-b-PEO-h-PCL star triblock copolymers. In these systems the crystallization occurs from a homogeneous melt Avrami indexes higher than 1 are always observed since the crystallization drives structure formation and does not occur under confined conditions. A reduction in the equilibrium melting temperature in the star block copolymers was also observed. [Pg.70]

Unlike the bulk morphology, block copolymer thin films are often characterized by thickness-dependent highly oriented domains, as a result of surface and interfacial energy minimization [115,116]. For example, in the simplest composition-symmetric (ID lamellae) coil-coil thin films, the overall trend when t>Lo is for the lamellae to be oriented parallel to the plane of the film [115]. Under symmetric boundary conditions, frustration cannot be avoided if t is not commensurate with L0 in a confined film and the lamellar period deviates from the bulk value by compressing the chain conformation [117]. Under asymmetric boundary conditions, an incomplete top layer composed of islands and holes of height Lo forms as in the incommensurate case [118]. However, it has also been observed that microdomains can reorient such that they are perpendicular to the surface [ 119], or they can take mixed orientations to relieve the constraint [66]. [Pg.204]

Fig. 10 Illustrations of the microchannel confined surface-initiated polymerization (p-SIP) route for producing gradient polymer brush libraries a route for making polymer molecular weight and block copolymer libraries b route for making statistical copolymer libraries. Red arrows show the flow of monomer solution from a syringe pump used to gradually fill the microchannel. See text for details... Fig. 10 Illustrations of the microchannel confined surface-initiated polymerization (p-SIP) route for producing gradient polymer brush libraries a route for making polymer molecular weight and block copolymer libraries b route for making statistical copolymer libraries. Red arrows show the flow of monomer solution from a syringe pump used to gradually fill the microchannel. See text for details...
The effect on structure of confining block copolymers in thin films has been examined, largely using neutron reflectivity and atomic force microscopy. A number of features that result from the constraint of reduced dimensionality have been reported, such as the observation of islands and holes at the surface... [Pg.5]


See other pages where Block copolymers, confinement is mentioned: [Pg.186]    [Pg.177]    [Pg.158]    [Pg.328]    [Pg.595]    [Pg.289]    [Pg.17]    [Pg.73]    [Pg.201]    [Pg.204]    [Pg.186]    [Pg.177]    [Pg.158]    [Pg.328]    [Pg.595]    [Pg.289]    [Pg.17]    [Pg.73]    [Pg.201]    [Pg.204]    [Pg.606]    [Pg.56]    [Pg.173]    [Pg.434]    [Pg.187]    [Pg.220]    [Pg.31]    [Pg.49]    [Pg.49]    [Pg.54]    [Pg.56]    [Pg.56]    [Pg.67]    [Pg.186]    [Pg.205]    [Pg.211]    [Pg.213]    [Pg.151]    [Pg.413]    [Pg.118]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Block Copolymer Self-Assembly Under Confinement

Block copolymers confined crystallization

Computer Simulation of Confined Block Copolymers

Confined crystallization in block copolymers

Confinement of CNTs in Block Copolymer Matrix

© 2024 chempedia.info