Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen atmosphere

Commercially, maleic anhydride is prepared more cheaply by the catalytic vapour phase oxidation (in the presence of vanadium pentoxide at about 400°) of benzene with atmospheric oxygen ... [Pg.462]

Donor substituents on the vinyl group further enhance reactivity towards electrophilic dienophiles. Equations 8.6 and 8.7 illustrate the use of such functionalized vinylpyrroles in indole synthesis[2,3]. In both of these examples, the use of acetyleneic dienophiles leads to fully aromatic products. Evidently this must occur as the result of oxidation by atmospheric oxygen. With vinylpyrrole 8.6A, adducts were also isolated from dienophiles such as methyl acrylate, dimethyl maleate, dimethyl fumarate, acrolein, acrylonitrile, maleic anhydride, W-methylmaleimide and naphthoquinone. These tetrahydroindole adducts could be aromatized with DDQ, although the overall yields were modest[3]. [Pg.84]

Kharasch called this the peroxide effect and demonstrated that it could occur even if peroxides were not deliberately added to the reaction mixture Unless alkenes are pro tected from atmospheric oxygen they become contaminated with small amounts of alkyl hydroperoxides compounds of the type ROOH These alkyl hydroperoxides act m the same way as deliberately added peroxides promoting addition m the direction opposite to that predicted by Markovmkov s rule... [Pg.243]

The reaction follows a free radical mechanism and gives a hydroperoxide a compound of the type ROOH Hydroperoxides tend to be unstable and shock sensitive On stand mg they form related peroxidic derivatives which are also prone to violent decomposi tion Air oxidation leads to peroxides within a few days if ethers are even briefly exposed to atmospheric oxygen For this reason one should never use old bottles of dialkyl ethers and extreme care must be exercised m their disposal... [Pg.674]

A sensitive method for the flow injection analysis of Cu + is based on its ability to catalyze the oxidation of di-2-pyridyl ketone hydrazone (DPKH) by atmospheric oxygen. The product of the reaction is fluorescent and can be used to generate a signal when using a fluorometer as a detector. The yield of the reaction is at a maximum when the solution is made basic with NaOH. The fluorescence, however, is greatest in the presence of HCl. Sketch an FIA manifold that will be appropriate for this analysis. [Pg.663]

During the vapor deposition process, the polymer chain ends remain truly aUve, ceasing to grow only when they are so far from the growth interface that fresh monomer can no longer reach them. No specific termination chemistry is needed, although subsequent to the deposition, reaction with atmospheric oxygen, as well as other chemical conversions that alter the nature of the free-radical chain ends, is clearly supported experimentally. [Pg.433]

Dissolved matter lowers oxygen solubihty. At 20°C and 101.3 kPa (1 atm), the equihbrium concentration of dissolved oxygen in seawater is 7.42 mg/L. It is 9.09 mg/L in chloride-free water and 9.17 mg/L in clean water. This lessening of oxygen solubihty is of importance to wastewater treatment. The solubihty of atmospheric oxygen in a domestic sewage is much less than in distilled water (12). [Pg.339]

Metallui ical. To prevent reaction with atmospheric oxygen and nitrogen, some metals must be shielded using an inert gas when heated or melted (94). AppHcations in metals processing account for most argon consumption and an important part of helium usage (see AfETALLURGY). [Pg.14]

The chemical properties of phthalocyanines depend mosdy on the nature of the central atom. Phthalocyanines are stable to atmospheric oxygen up to approximately 100°C. Mild oxidation may lead to the formation of oxidation iatermediates that can be reduced to the original products (29). In aqueous solutions of strong oxidants, the phthalocyanine ring is completely destroyed and oxidized to phthalimide. Oxidation ia the presence of ceric sulfate can be used to determine the amount of copper phthalocyanine quantitatively (30). [Pg.504]

Transparent yeUow pigment is composed of needle particles of EeO(OH) having a thickness of 2—5 nm, a width of 10—20 nm, and a length of 50—100 nm. They are prepared by the precipitation process from a very diluted solution of ferrous salt, eg, 6 wt % ferrous sulfate, foUowed by the oxidation of the precipitate with atmospheric oxygen at a temperature of less than 25°C. The precipitate is left to mature for about one day, then filtered, dried, and milled. [Pg.16]

AH the bis- and tri-unsaturated prostanoids display sensitivity to atmospheric oxygen similar to that of polyunsaturated fatty acids and Hpids. As a result, exposure to the air causes gradual decomposition although the crystalline prostanoids ate less prone to oxygenation reactions than PG oils or solutions. [Pg.154]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

Flash Point. As a liquid is heated, its vapor pressure and, consequendy, its evaporation rate increase. Although a hquid does not really bum, its vapor mixed with atmospheric oxygen does. The minimum temperature at which there is sufficient vapor generated to allow ignition of the air—vapor mixture near the surface of the hquid is called the dash point. Although evaporation occurs below the dash point, there is insufficient vapor generated to form an igrhtable mixture below that point. [Pg.310]

The preparation of triaryknethane dyes proceeds through several stages formation of the colorless leuco base in acid media, conversion to the colorless carbinol base by using an oxidising agent, eg, lead dioxide, manganese dioxide, or alkah dichromates, and formation of the dye by treatment with acid (Fig. 1). The oxidation of the leuco base can also be accompHshed with atmospheric oxygen in the presence of catalysts. [Pg.270]

V-methyl aniline formed in the initial step to give the leuco base of methyl violet. Treatment with aqueous acid produces the dye. Because Michler s hydrol may also react with dimethyl aniline instead of the /V-methyl aniline to give crystal violet, commercial-grade methyl violet is usually a mixture. A cobalt complex has converted 4,T-dimethylaminodipheny1methane and dimethyl aniline in the presence of atmospheric oxygen to crystal violet in one step (50). [Pg.273]

Other alkaline primary cells couple zinc with oxides of mercury or silver and some even use atmospheric oxygen (zinc—air cell). Frequendy, zinc powder is used in the fabrication of batteries because of its high surface area. Secondary (rechargeable) cells with zinc anodes under development are the alkaline zinc—nickel oxide and zinc—chlorine (see Batteries). [Pg.398]

It is pmdent to perform zone melting in a dry inert atmosphere. Oxygen causes most organic melts to oxidize slowly. Oxygen and moisture not only oxidize metals and semiconductors, but often enhance sticking to the container. Molten salts attack sUica more rapidly in the presence of moisture. Oxygen and water are considered impurities in some inorganic compounds. [Pg.451]

Antioxidants are used to retard the reaction of organic materials with atmospheric oxygen. Such reaction can cause degradation of the mechanical, aesthetic, and electrical properties of polymers loss of flavor and development of rancidity ia foods and an iacrease ia the viscosity, acidity, and formation of iasolubles ia lubricants. The need for antioxidants depends upon the chemical composition of the substrate and the conditions of exposure. Relatively high concentrations of antioxidants are used to stabilize polymers such as natural mbber and polyunsaturated oils. Saturated polymers have greater oxidative stabiUty and require relatively low concentrations of stabilizers. Specialized antioxidants which have been commercialized meet the needs of the iadustry by extending the useflil Hves of the many substrates produced under anticipated conditions of exposure. The sales of antioxidants ia the United States were approximately 730 million ia 1990 (1,2). [Pg.222]

Finely divided barium is susceptible to rapid, violent combination with atmospheric oxygen. Therefore, in powdered form it must be considered pyrophoric and very dangerous to handle in the presence of air or other oxidising gases. Barium powder must be stored under dry argon or helium to avoid the possibihty of violent explosions. Massive pieces of barium, however, oxidize relatively slowly and present no explosion hazard if kept dry. [Pg.472]


See other pages where Oxygen atmosphere is mentioned: [Pg.47]    [Pg.124]    [Pg.406]    [Pg.110]    [Pg.879]    [Pg.131]    [Pg.3]    [Pg.194]    [Pg.116]    [Pg.117]    [Pg.240]    [Pg.196]    [Pg.32]    [Pg.124]    [Pg.77]    [Pg.79]    [Pg.475]    [Pg.95]    [Pg.233]    [Pg.250]    [Pg.346]    [Pg.347]    [Pg.350]    [Pg.161]    [Pg.163]    [Pg.199]    [Pg.289]    [Pg.390]    [Pg.67]    [Pg.145]    [Pg.231]    [Pg.207]   
See also in sourсe #XX -- [ Pg.159 , Pg.160 , Pg.161 , Pg.162 , Pg.163 , Pg.164 , Pg.165 ]

See also in sourсe #XX -- [ Pg.2 , Pg.294 , Pg.405 , Pg.406 , Pg.407 , Pg.410 , Pg.411 ]

See also in sourсe #XX -- [ Pg.176 , Pg.177 , Pg.178 ]

See also in sourсe #XX -- [ Pg.1056 ]




SEARCH



Atmosphere free oxygen

Atmosphere of oxygen

Atmosphere oxygen-deficient

Atmosphere sulfur dioxide reaction with oxygen

Atmospheric chemistry pure oxygen atmosphere

Atmospheric molecular oxygen

Atmospheric potential oxygen

Atmospherics oxygen

Atmospherics oxygen

Bacteria, evolution, atmospheric oxygen

Copper(II) catalyzed oxidation of primary alcohols to aldehydes with atmospheric oxygen

Formation of singlet oxygen in the atmosphere

Formation of singlet oxygen in the contaminated atmosphere

Hydrocarbons, atmosphere oxygenated

Influence of residual oxygen in inert atmosphere

Nitric oxide, polluted atmospheres oxygen

Nitrogen and oxygen atmospheric elements

OXYGEN Soil atmosphere

OXYGEN Wood, residual atmosphere

Oxidation atmospheric oxygen

Oxidation by atmospheric oxygen

Oxygen and atmosphere

Oxygen atmosphere, composition

Oxygen atmospheric

Oxygen atmospheric concentration

Oxygen atmospheric control

Oxygen atmospheric evolution

Oxygen atmospheric fluctuation

Oxygen atmospheric mixing ratio

Oxygen atmospheric oxidant

Oxygen atmospheric residence time

Oxygen early atmosphere

Oxygen in the atmosphere

Oxygen isotopes, atmospheric

Oxygen isotopes, atmospheric oxidation

Oxygen levels early atmosphere

Oxygen primeval atmosphere

Oxygen reheat furnace atmosphere

Oxygen uptake atmosphere

Oxygen, atmosphere, aqueous phase

Oxygen, atmosphere, aqueous phase chemistry

Oxygen, atmospheric, consumption

Oxygen-enriched atmosphere

Oxygenated atmosphere

Oxygenates atmospheric chemistry

Oxygenates atmospheric oxidation

Oxygenates remote atmospheres

Oxygenates rural atmospheres

Oxygenates urban atmosphere

Photosynthesis atmospheric oxygen from

Plasma treatments, atmospheric pressure oxygen

Primitive atmosphere oxygen

Pure oxygen atmosphere

Role of atmospheric oxygen

Self-contained breathing apparatus in oxygen-deficient atmospheres

Uptake and Permeation of Atmospheric Oxygen in PVC

© 2024 chempedia.info