Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric epoxidation Sharpless titanium

Review M. G. Finn and K. B. Sharpless, On the Mechanism of Asymmetric Epoxidation with Titanium-Tartrate Catalysts, in J. D. Morrison, ed., Asymmetric Synthesis, Vol. 5, Chap. 8, Academic Press, New York, 1985 R. A. Johnson and K. B. Sharpless, Addition Reactions with Formation of Car-... [Pg.129]

B. E. Rossiter (1985). Synthetic aspects and application of asymmetric epoxidation , in Asymmetric Synthesis. Ed. J. Morrison. Orlando Academic Press, p. 194 M. G. Finn and K. B. Sharpless On the mechanism of asymmetric epoxidation with titanium-tartrate catalysts . Ibid., p. 247. [Pg.1194]

Asymmetric epoxidation. Sharpless et a .1 have reviewed the numerous applications of titanium-catalyzed asymmetric epoxidations developed in their own and other laboratories. All the reactions conform to the enantiomeric selectivity first observed and formulated as in Scheme (I). [Pg.51]

Finn MG, Sharpless KB (1985) On the mechanism of asymmetric epoxidation with titanium-tartrate catalysts. In Scott JW, Morrison JD (eds) Asymmetric Synthesis, vol 5. Academic Press, Orlando, p 247... [Pg.281]

Finn MG, Sharpless KB (1985) On the mechanism of asymmetric epoxidation with titanium-... [Pg.381]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

The emergence of the powerful Sharpless asymmetric epoxida-tion (SAE) reaction in the 1980s has stimulated major advances in both academic and industrial organic synthesis.14 Through the action of an enantiomerically pure titanium/tartrate complex, a myriad of achiral and chiral allylic alcohols can be epoxidized with exceptional stereoselectivities (see Chapter 19 for a more detailed discussion). Interest in the SAE as a tool for industrial organic synthesis grew substantially after Sharpless et al. discovered that the asymmetric epoxidation process can be conducted with catalytic amounts of the enantiomerically pure titanium/tartrate complex simply by adding molecular sieves to the epoxidation reaction mix-... [Pg.345]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

Asymmetric epoxidation is another important area of activity, initially pioneered by Sharpless, using catalysts based on titanium tetraisoprop-oxide and either (+) or (—) dialkyl tartrate. The enantiomer formed depends on the tartrate used. Whilst this process has been widely used for the synthesis of complex carbohydrates it is limited to allylic alcohols, the hydroxyl group bonding the substrate to the catalyst. Jacobson catalysts (Formula 4.3) based on manganese complexes with chiral Shiff bases have been shown to be efficient in epoxidation of a wide range of alkenes. [Pg.117]

The epoxidation of allylic alcohols can also be effected by /-butyl hydroperoxide and titanium tetraisopropoxide. When enantiomerically pure tartrate ligands are included, the reaction is highly enantioselective. This reaction is called the Sharpless asymmetric epoxidation.55 Either the (+) or (—) tartrate ester can be used, so either enantiomer of the desired product can be obtained. [Pg.1082]

The scope of metal-mediated asymmetric epoxidation of allylic alcohols was remarkably enhanced by a new titanium system introduced by Katsuki and Sharpless epoxidation of allylic alcohols using a titanium(IV) isopropoxide, dialkyl tartrate (DAT), and TBHP (TBHP = tert-butyl-hydroperoxide) proceeds with high enantioselectivity and good chemical yield, regardless of... [Pg.208]

An important breakthrough in asymmetric epoxidation has been the Katsuki-Sharpless invention [1], The reaction uses a chiral Ti(IV) catalyst, t-butylhydroperoxide as the oxidant and it works only for allylic alcohols as the substrate. In the first report titanium is applied in a stoichiometric amount. The chirality is introduced in the catalyst by reacting titanium tetra-isopropoxide... [Pg.301]

The AD has been developed into an extremely useful reaction, and Sharpless states that probably its synthetic utility surpasses that of titanium tartrate-catalysed asymmetric epoxidation [16], since the range of substrates is much larger for AD. [Pg.312]

Although it was also Henbest who reported as early as 1965 the first asymmetric epoxidation by using a chiral peracid, without doubt, one of the methods of enantioselective synthesis most frequently used in the past few years has been the "asymmetric epoxidation" reported in 1980 by K.B. Sharpless [3] which meets almost all the requirements for being an "ideal" reaction. That is to say, complete stereofacial selectivities are achieved under catalytic conditions and working at the multigram scale. The method, which is summarised in Fig. 10.1, involves the titanium (IV)-catalysed epoxidation of allylic alcohols in the presence of tartaric esters as chiral ligands. The reagents for this asyimnetric epoxidation of primary allylic alcohols are L-(+)- or D-(-)-diethyl (DET) or diisopropyl (DIPT) tartrate,27 titanium tetraisopropoxide and water free solutions of fert-butyl hydroperoxide. The natural and unnatural diethyl tartrates, as well as titanium tetraisopropoxide are commercially available, and the required water-free solution of tert-bnty hydroperoxide is easily prepared from the commercially available isooctane solutions. [Pg.278]

The full paper on titanium-catalysed asymmetric epoxidation appeared in 1987 [6], once the improved catalytic procedure in the presence of molecular sieves had already been fully developed [5]. On the other hand, excellent "autobiographic" accounts have also been published in which "Everything You Ever Wanted to Know About the Discovery of Asymmetric Epoxidation" is honestly and vividly exposed by K. Barry Sharpless [4] [7]. [Pg.278]

There has recently been much work in this area using Ru-based catalysts, particularly with porphyrin-based catalysts, following the work by Sharpless et al. on asynunetric epoxidation of allylic alcohols by a titanium-based tartrate system. There are reviews on asymmetric epoxidations catalysed by chiral Ru porphyrins [5, 18]. [Pg.178]

Sharpless Asymmetric Epoxidation This is a method of converting allylic alcohols to chiral epoxy alcohols with very high enantioselectivity (i.e., with preference for one enantiomer rather than formation of racemic mixture). It involves treating the allylic alcohol with tert-butyl hydroperoxide, titanium(IV) tetra isopropoxide [Ti(0—/Pr)4] and a specific stereoisomer of tartaric ester. For example,... [Pg.229]

Titanium-pillared montmorillonite may be used as a heterogeneous catalyst for the Sharpless asymmetric epoxidation of allylic alcohols (Scheme 20) (46). The enantiomeric purities of the epoxy products are comparable with those achieved using homogeneous Ti isopropoxide with molecular sieves as water scavengers (Chapter 4). Since basal spacing of the recovered catalyst after the reaction is unaltered, the catalyst can be recycled. [Pg.384]

Studies of bis-tartrate esters and other tartrate ligands for titanium-mediated asymmetric epoxidation have provided evidence against the sole intermediacy of monomeric titanium-tartrate species in the parent system329,330. Other tartrate ligands have been studied in attempts to gain a better understanding of the mechanism of the Sharpless epoxidation330. [Pg.1179]

High diastereoselectivity is found in the epoxidation of fluoroallylic alcohols with titanium(IV) isopropoxide and fert-butyl hydroperoxide337. The anomalous Sharpless asymmetric epoxidation has been used in the synthesis of L-erythro- and D-threo-sphingosines338. [Pg.1180]

The known allylic alcohol 9 derived from protected dimethyl tartrate is exposed to Sharpless asymmetric epoxidation conditions with (-)-diethyl D-tartrate. The reaction yields exclusively the anti epoxide 10 in 77 % yield. In contrast to the above mentioned epoxidation of the ribose derived allylic alcohol, in this case epoxidation of 9 with MCPBA at 0 °C resulted in a 65 35 mixture of syn/anti diastereomers. The Sharpless epoxidation of primary and secondary allylic alcohols discovered in 1980 is a powerful reagent-controlled reaction.12 The use of titanium(IV) tetraisopropoxide as catalyst, tert-butylhydro-peroxide as oxidant, and an enantiopure dialkyl tartrate as chiral auxiliary accomplishes the epoxidation of allylic alcohols with excellent stereoselectivity. If the reaction is kept absolutely dry, catalytic amounts of the dialkyl tartrate(titanium)(IV) complex are sufficient. [Pg.202]

APTMS-modified MCM-41 surface. In a last step, titanium tetra-wo-propoxide reacted with the chiral organic-inorganic hybrid material, to give the heterogeneous variant of the asymmetric epoxidation catalyst of allylic alcohols, proposed by Katsuki and Sharpless.312... [Pg.93]


See other pages where Asymmetric epoxidation Sharpless titanium is mentioned: [Pg.193]    [Pg.248]    [Pg.298]    [Pg.434]    [Pg.205]    [Pg.826]    [Pg.826]    [Pg.195]    [Pg.27]    [Pg.120]    [Pg.254]    [Pg.417]    [Pg.417]    [Pg.39]    [Pg.828]    [Pg.328]    [Pg.1133]    [Pg.116]    [Pg.28]    [Pg.277]   
See also in sourсe #XX -- [ Pg.1044 , Pg.1045 , Pg.1046 , Pg.1047 , Pg.1048 , Pg.1049 ]




SEARCH



Asymmetric epoxidation

Epoxidations, asymmetric

Epoxide Sharpless

Epoxides Sharpless titanium

Epoxides asymmetric epoxidation

Epoxides, Sharpless

Sharpless

Sharpless asymmetric

Sharpless asymmetric epoxidations

Sharpless epoxidation

Sharpless epoxidations

Titanium asymmetric epoxidation

© 2024 chempedia.info