Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

As phase transfer catalysts

Quaternary ammonium salts as we have seen are useful m synthetic organic chem istry as phase transfer catalysts In another more direct application quaternary ammo mum hydroxides are used as substrates m an elimination reaction to form alkenes... [Pg.938]

Pha.se-Tra.nsfer Ca.ta.lysts, Many quaternaries have been used as phase-transfer catalysts. A phase-transfer catalyst (PTC) increases the rate of reaction between reactants in different solvent phases. Usually, water is one phase and a water-iminiscible organic solvent is the other. An extensive amount has been pubHshed on the subject of phase-transfer catalysts (233). Both the industrial appHcations in commercial manufacturing processes (243) and their synthesis (244) have been reviewed. Common quaternaries employed as phase-transfer agents include benzyltriethylammonium chloride [56-37-17, tetrabutylammonium bromide [1643-19-2] tributylmethylammonium chloride [56375-79-2] and hexadecylpyridinium chloride [123-03-5]. [Pg.383]

Other commercial naphthalene-based sulfonic acids, such as dinonylnaphthalene sulfonic acid, are used as phase-transfer catalysts and acid reaction catalysts in organic solvents (71). Dinonylnaphthalene sulfonic acid is an example of a water-insoluble synthetic sulfonic acid. [Pg.100]

Saturated hydrocarbons can be chlorinated in moderate yields under mild conditions in a biphasic system consisting of alkaline hypochlorite solution and CH2CI2 containing Ni(Il) bis(saHcyHdene)ethylenediamine as chlorination catalyst and bexadecyltrimetbylammonium bromide as phase-transfer catalyst (166). [Pg.469]

Both of these structures are open-chained compounds corresponding to crown ethers in function if not exactly in structure (see Chap. 7). They have repeating ethyleneoxy side-chains generally terminated in a methyl group. Montanari and co-workers introduced the polypodes 22 as phase transfer catalysts . These compounds were based on the triazine nucleus as illustrated below. The first octopus molecule (23) was prepared by Vogtle and Weber and is shown below. The implication of the name is that the compound is multiarmed and not specifically that it has eight such side-chains. Related molecules have recently been prepared by Hyatt and the name octopus adopted. For further information on this group of compounds and for examples of structures, refer to the discussion and tables in Chap. 7. [Pg.7]

Tomoi and coworkers adopted a somewhat more direct approach in their synthesis of 16-crown-5 derivatives bearing a single alkenyl residue. They hoped to obtain precursors to polymers which could be used as phase transfer catalysts. In this approach I,I-bis-chloromethylethylene (a-chloromethallyl chloride) was allowed to react with the dianion of tetraethylene glycol (NaH/THF). By this method, methylene-16-crown-5 could be isolated in 66% yield after vacuum distillation. Ozonolysis led, in almost quantitative yield, to the formation of oxo-16-crown-5 as shown in Eq. (3.38). These authors prepared a number of other, closely related species by similar methods. [Pg.40]

A good deal of work has been done on polymeric crown ethers during the last decade. Hogen Esch and Smid have been major contributors from the point of view of cation binding properties, and Blasius and coworkers have been especially interested in the cation selectivity of such species. Montanari and coworkers have developed a number of polymer-anchored crowns for use as phase transfer catalysts. Manecke and Storck have recently published a review titled Polymeric Catalysts , which may be useful to the reader in gaining additional perspective. [Pg.276]

Montanari and his coworkers used the interesting polypode ligands derived from sym-trichlorotriazine as phase transfer catalysts for a variety of transformations. These catalysts were quite successful and their formation is illustrated below in Eqs. (7.3)— (7.5). Comparisons were also made with certain pentaerythrityl derived polypodes as well. These latter compounds are listed in Table 7.1 as compounds 10—13. [Pg.314]

Quaternaiy ammonium salts, as we have seen, aie useful in synthetic organic chemistry as phase-transfer catalysts. In another, more direct application, quaternaiy ammonium hydroxides aie used as substrates in an elimination reaction to fonn alkenes. [Pg.938]

Compare electrostatic potential maps for tetrabenzyl-ammonium ion and tetraethylammonium ion with that of benzyltrimethylammonium ion. Are they likely to be as effective or more effective as phase-transfer catalysts as benzyltrimethylammonium ion Explain. (Hint Predict solubility properties for the three ions.)... [Pg.207]

The most widely accepted mechanism of reaction is shown in the catalytic cycle (Scheme 1.4.3). The overall reaction can be broken down into three elementary steps the oxidation step (Step A), the first C-O bond forming step (Step B), and the second C-O bond forming step (Step C). Step A is the rate-determining step kinetic studies show that the reaction is first order in both catalyst and oxidant, and zero order in olefin. The rate of reaction is directly affected by choice of oxidant, catalyst loadings, and the presence of additives such as A -oxides. Under certain conditions, A -oxides have been shown to increase the rate of reaction by acting as phase transfer catalysts. ... [Pg.30]

Arai and co-workers have used chiral ammonium salts 89 and 90 (Scheme 1.25) derived from cinchona alkaloids as phase-transfer catalysts for asymmetric Dar-zens reactions (Table 1.12). They obtained moderate enantioselectivities for the addition of cyclic 92 (Entries 4—6) [43] and acyclic 91 (Entries 1-3) chloroketones [44] to a range of alkyl and aromatic aldehydes [45] and also obtained moderate selectivities on treatment of chlorosulfone 93 with aromatic aldehydes (Entries 7-9) [46, 47]. Treatment of chlorosulfone 93 with ketones resulted in low enantioselectivities. [Pg.23]

Sulphoxides can be used as phase transfer catalysts, for example, a-phosphoryl sulphoxides (Scheme 24) have been used as phase transfer catalysts in the two-phase alkylation of phenylacetonitrile or phenylacetone with alkyl halides and aqueous sodium hydroxide. However, they are considered to be inefficient catalysts for simple displacement reactions226. [Pg.573]

Benzofurans have been prepared by microwave-accelerated cyclocondensation of differently substituted salicylaldehydes 182 with esters of chloroacetic acid 183 in the presence of K2CO3 (used as the solid support) and tetrabutyl-ammonium bromide (TBAB) as phase transfer catalyst [120]. This method seemed general regarding the variations at the benzene ring and the nature of the ester moiety (Scheme 66). [Pg.247]

The diazo transfer reaction between p-toluenesulfonyl azide and active methylene compounds is a useful synthetic method for the preparation of a-diazo carbonyl compounds. However, the reaction of di-tert-butyl malonate and p-toluenesulfonyl azide to form di-tert-butyl diazomalonate proceeded to the extent of only 47% after 4 weeks with the usual procedure." The present procedure, which utilizes a two-phase medium and methyltri-n-octylammonium chloride (Aliquat 336) as phase-transfer catalyst, effects this same diazo transfer in 2 hours and has the additional advantage of avoiding the use of anhydrous solvents. This procedure has been employed for the preparation of diazoacetoacetates, diazoacetates, and diazomalonates (Table I). Ethyl and ten-butyl acetoacetate are converted to the corresponding a-diazoacetoacetates with saturated sodium carbonate as the aqueous phase. When aqueous sodium hydroxide is used with the acetoace-tates, the initially formed a-diazoacetoacetates undergo deacylation to the diazoacetates. Methyl esters are not suitable substrates, since they are too easily saponified under these conditions. [Pg.35]

Gutfelt et al. (1997) have evaluated various ME formulations as reaction media for synthesis of decyl sulphonate from decylbromide and sodium sulphite. The reaction rate was fast both in water-in-oil and in bicontinuous ME based on non-ionic surfactants. A comparison was made with this reaction being conducted in a two-phase. system with quats as phase-transfer catalyst but was found to be much less efficient. However, when two other nucleophiles, NaCN and NaNOj, were used the PTC method was almost as efficient as the ME media. It seems that in the case of decyl sulphonate there is a strong ion pair formation between the product and the PTC. The rate in the ME media could be further increased by addition of a small amount of a cationic surfactant. [Pg.150]

Catalysis at interfaces between two immiscible liquid media is a rather wide topic extensively studied in various fields such as organic synthesis, bioenergetics, and environmental chemistry. One of the most common catalytic processes discussed in the literature involves the transfer of a reactant from one phase to another assisted by ionic species referred to as phase-transfer catalyst (PTC). It is generally assumed that the reaction process proceeds via formation of an ion-pair complex between the reactant and the catalyst, allowing the former to transfer to the adjacent phase in order to carry out a reaction homogeneously [179]. However, detailed comparisons between interfacial processes taking place at externally biased and open-circuit junctions have produced new insights into the role of PTC [86,180]. [Pg.231]

Tetrazolium salts have found use as phase transfer catalysts in the oxidation of benzaldehyde640 and toluene193 and the displacement reaction of acid chlorides with sodium azide.639... [Pg.278]

The mesogenic units with methylenic spacers were prepared by reacting the sodium salt of either 4-methoxy-4 -hydroxybiphenyl or 4-phenylphenol with a bromoester in DMF at 82° C for at least 4 hours in the presence of tetrabutylammonium hydrogen sulfate (TBAH) as phase transfer catalyst. In this way, ethyl 4-(4-oxybi-phenyl)butyrate, ethyl 4-(4-methoxy-4 -oxybiphenyl)butyrate, ethyl 4-(4-oxybiphenyl)valerate, ethyl 4-(4-methoxy-4 -oxybiphenyl)-valerate, n-propyl 4-(4-oxybiphenyl)undecanoate and n-propyl 4-(4-methoxy-4 -oxybiphenyl)undecanoate were obtained. These esters were hydrolyzed with base and acidified to obtain the carboxylic acids. The corresponding potassium carboxylates were obtained by reaction with approximately stoichiometric amounts of potassium hydroxide. Experimental details of these syntheses were described elsewhere (27). [Pg.102]

The design of functionalized polymers with a specific utilization is seen in new polysiloxanes used by Zeldin (p. 199) as phase transfer catalysts. Novel functional polyphosphazenes have been reported as well by Allcock (p. 250). The introduction of transition metal cyclopentadienyl, metal carbonyl and carborane moieties into polyphosphazene macromolecules is representative of truly novel chemistry achieved after careful model studies with corresponding molecular systems. [Pg.3]


See other pages where As phase transfer catalysts is mentioned: [Pg.923]    [Pg.923]    [Pg.925]    [Pg.382]    [Pg.469]    [Pg.26]    [Pg.923]    [Pg.923]    [Pg.925]    [Pg.794]    [Pg.116]    [Pg.541]    [Pg.573]    [Pg.1202]    [Pg.1207]    [Pg.111]    [Pg.541]    [Pg.573]    [Pg.231]    [Pg.39]    [Pg.44]   
See also in sourсe #XX -- [ Pg.454 ]

See also in sourсe #XX -- [ Pg.573 , Pg.574 ]




SEARCH



Aliquat 336 as phase transfer catalyst

Alkaloid Derivatives as Asymmetric Phase-transfer Catalysts

Alkaloids as phase-transfer-catalysts

Amine Salts as Phase-Transfer Catalysts

Ammonium salts as phase transfer catalysts

Benzyltriethylammonium chloride, as phase transfer catalyst

Catalyst phase

Catalysts transfer

Crown ethers as phase transfer catalysts

Cyclodextrins, as phase-transfer catalysts

Ethers as Chiral Phase-Transfer Catalysts

Ethers, Taddol, Nobin and Metal(salen) Complexes as Chiral Phase-Transfer Catalysts for Asymmetric Synthesis

PEG as Phase-Transfer Catalyst

Quaternary ammonium salts as phase transfer catalysts

Tetraalkylammonium Salts as Phase-Transfer Catalysts

Tetrabutylammonium as phase transfer catalyst

Use of Crown Ether as Phase-Transfer Catalyst

Use of Nobin and Related Species as Asymmetric Phase-Transfer Catalysts

© 2024 chempedia.info