Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics substituted, alkylation

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

Other typical electrophilic aromatic substitution reactions—nitration (second entry) sul fonation (fourth entry) and Friedel-Crafts alkylation and acylation (fifth and sixth entnes)—take place readily and are synthetically useful Phenols also undergo elec trophilic substitution reactions that are limited to only the most active aromatic com pounds these include mtrosation (third entry) and coupling with diazomum salts (sev enth entry)... [Pg.1002]

The reaction between an alkoxide ion and an aryl halide can be used to prepare alkyl aryl ethers only when the aryl halide is one that reacts rapidly by the addition-elim mation mechanism of nucleophilic aromatic substitution (Section 23 6)... [Pg.1008]

Attack by the halide nucleophile at the sp hybridized carbon of the alkyl group is anal ogous to what takes place in the cleavage of dialkyl ethers Attack at the sp hybridized carbon of the aromatic nng is much slower Indeed nucleophilic aromatic substitution does not occur at all under these conditions... [Pg.1011]

Polynuclear Aromatics. The alkylation of polynuclear aromatics with olefins and olefin-producing reagents is effected by acid catalysts. The alkylated products are more compHcated than are those produced by the alkylation of benzene because polynuclear aromatics have more than one position for substitution. For instance, the alkylation of naphthalene [91-20-3] with methanol over mordenite and Y-type zeoHtes at 400—450°C produces 1-methylnaphthalene [90-12-0] and 2-methylnaphthalene at a 2-/1- ratio of about 1.8. The selectivity to 2-methylnaphthalene [91-57-6] is increased by applying a ZSM-5 catalyst to give a 2-/1- ratio of about 8 (102). [Pg.53]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

Resonance effects are the primary influence on orientation and reactivity in electrophilic substitution. The common activating groups in electrophilic aromatic substitution, in approximate order of decreasing effectiveness, are —NR2, —NHR, —NH2, —OH, —OR, —NO, —NHCOR, —OCOR, alkyls, —F, —Cl, —Br, —1, aryls, —CH2COOH, and —CH=CH—COOH. Activating groups are ortho- and para-directing. Mixtures of ortho- and para-isomers are frequently produced the exact proportions are usually a function of steric effects and reaction conditions. [Pg.39]

Substituents which are not directly bound to the aromatic ring can also influence the course of electrophilic aromatic substitution. Several alkyl groups bearing electron-... [Pg.561]

Friedel-Crafts alkylation (Section 12.6) An electrophilic aromatic substitution in which an aromatic compound reacts with an alkyl halide in the presence of aluminum chloride. An alkyl group becomes bonded to the ring. [Pg.1284]

The a-selectivity is illustrated by the fact that 2-alkyl-, > 2-methoxy-, > and 2-alkyIthio-thiophenes and alkyl thenyl sul-fides ° are metalated exclusively in the 5-position. In electrophilic aromatic substitution, as previously mentioned, an appreciable amount of 3-substitution is obtained with some of these groups. After acetalization ketones can also be metalated. Thus from the diethyl ketal of 2-acetylthiophene, 2-acetyl-5-thiophenealdehyde was obtained after metalation with n-butyllithium followed by the reaction of the metalorganic compound with A,A -dimethylformamide. ... [Pg.73]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

In an effort to more closely mimic the aromatic substitution pattern found in morphine (see A) the pethidine analog containing the m-hydroxy group was prepared as well. Thus, in a synthesis analogous to that used to prepare the parent compound, double alkylation of m-methoxyphenylacetonitrile with the chloroamine. [Pg.302]

Nucleophilic aromatic substitution of the anthranilic acid derivatives, 72, on ortho-bromonitrobenzene affords the diphenyl-amine, 73. The ester is then saponified and the nitro group reduced to the amine (74). Cyclization of the resulting amino acid by heat affords the lactam (75). Alkylation on the amide nitrogen with 2-dimethylaminoethyl chloride by means of sodium amide affords dibenzepine (76). ... [Pg.405]

Antidepressant activity is retained when the two carbon bridge in imipramine is replaced by a larger, more complex, function. Nucleophilic aromatic substitution on chloropyridine 31 by means of p-aminobenzophenone (32) gives the bicyclic intermediate 33. Reduction of the nitro group (34), followed by intramolecular Schiff base formation gives the required heterocyclic ring system 35. Alkylation of the anion from 35 with l-dimethylamino-3-chloropropane leads to tampramine 36 [8]. [Pg.203]

Among the most useful electrophilic aromatic substitution reactions In the laboratory is alkylation—the introduction of an alkyl group onto the benzene ring. Called the Friedel-Crafts reaction after its discoverers, the reaction is carried out... [Pg.554]

Friedel-Crafts reaction (Section 16.3) An electrophilic aromatic substitution reaction to alkylate or acylate an aromatic ring. [Pg.1242]

Homolytic aromatic substitution often requires high temperatures, high concentrations of initiator, long reaction times and typically occurs in moderate yields.Such reactions are often conducted under reducing conditions with (TMSlsSiH, even though the reactions are not reductions and often finish with oxidative rearomatization. Reaction (68) shows an example where a solution containing silane (2 equiv) and AIBN (2 equiv) is slowly added (8h) in heated pyridine containing 2-bromopyridine (1 equiv) The synthesis of 2,3 -bipyridine 75 presumably occurs via the formation of cyclohexadienyl radicals 74 and its rearomatization by disproportionation with the alkyl radical from AIBN. ... [Pg.149]

Upon calcination the template is removed and the zeolite s well-defined pores are available for adsorption and catalysis. Particularly challenging is the field of electrophilic aromatic substitution. Here often non-regenerable metal chlorides serve as the catalyst in present industrial practice. Zeolites are about to take over the job and in fact are doing so for aromatic alkylation. [Pg.202]


See other pages where Aromatics substituted, alkylation is mentioned: [Pg.55]    [Pg.137]    [Pg.55]    [Pg.137]    [Pg.507]    [Pg.1282]    [Pg.84]    [Pg.38]    [Pg.155]    [Pg.206]    [Pg.564]    [Pg.38]    [Pg.355]    [Pg.74]    [Pg.382]    [Pg.220]    [Pg.548]    [Pg.562]    [Pg.1289]    [Pg.724]    [Pg.704]    [Pg.66]    [Pg.709]   
See also in sourсe #XX -- [ Pg.565 ]




SEARCH



2-Substituted alkyl 3-

Alkyl aromatics

Alkyl substitute

Alkyl-substituted aromatic

Alkylated aromatics

Alkylation aromatic

Aromatic alkylations

Aromatics alkylation

Substituted aromatics alkyl

Substitution alkylation

© 2024 chempedia.info