Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic pyrene

Other examples of generating free radicals utilized in our laboratory are the consecutive two-photon ionization of the aromatic pyrene residue in the benzo[a] pyrene derivative 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene (B[a]PT) or the covalent adducts derived from the reactions of racemic anti-r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE) with the N2-exocyclic amino groups of guanine or adenine bases in DNA [43-47]. The selective excitation of the pyrenyl residue of B[a]PT by intense 355-nm nanosecond laser pulses yields free radical products by a two-photon mechanism ... [Pg.87]

Pyrene (Fig. 14.17) is also aromatic. Pyrene itself has been known for a long time a pyrene derivative, however, has been the object of research that shows another interesting... [Pg.646]

This experiment provides considerable food for thought, but extrapolation to other systems must be done cautiously. The host-guest interactions in Eq. 4.37 are almost exclusively aromatic-aromatic, while more typical studies of the hydrophobic effect involve aliphatic groups. As noted earlier and below, aliphatics and aromatics have some considerable differences in their properties, mostly related to the quadrupole moment of the aromatics. Pyrene especially may not be representative of a typical hydrophobic molecule. In other manifestations of the hydrophobic effect, water does seem unique. For example, formamide is quite close to water in the Et(30) scale, and would therefore be expected to be close to water in the pyrene binding experiment of Figure 4.12. Nevertheless, micelles and vesicles are not foimd at all in formamide. [Pg.237]

Reduction of the polycyclic aromatic pyrene serves as another excellent example of an EE mechanism where follow-up chemical reactions complicate the overall mechanism (Figure 3). [Pg.997]

Outside of carbon monoxide for which the toxicity is already well-known, five types of organic chemical compounds capable of being emitted by vehicles will be the focus of our particular attention these are benzene, 1-3 butadiene, formaldehyde, acetaldehyde and polynuclear aromatic hydrocarbons, PNA, taken as a whole. Among the latter, two, like benzo [a] pyrene, are viewed as carcinogens. Benzene is considered here not as a motor fuel component emitted by evaporation, but because of its presence in exhaust gas (see Figure 5.25). [Pg.260]

It is interesting to note that recent evidence shows that even extra-terrestrially formed hydrocarbons can reach the Earth. The Earth continues to receive some 40,000 tons of interplanetary dust every year. Mass-spectrometric analysis has revealed the presence of hydrocarbons attached to these dust particles, including polycyclic aromatics such as phenanthrene, chrysene, pyrene, benzopyrene, and pentacene of extraterrestrial origin indicated by anomalous isotopic ratios. [Pg.128]

A large number of polycyclic aromatic hydrocarbons are known Many have been synthesized m the laboratory and several of the others are products of com bustion Benzo[a]pyrene for example is present m tobacco smoke contaminates food cooked on barbecue grills and collects m the soot of chimneys Benzo[a]pyrene is a carcinogen (a cancer causing substance) It is converted m the liver to an epoxy diol that can induce mutations leading to the uncontrolled growth of certain cells... [Pg.435]

Dyes, Dye Intermediates, and Naphthalene. Several thousand different synthetic dyes are known, having a total worldwide consumption of 298 million kg/yr (see Dyes AND dye intermediates). Many dyes contain some form of sulfonate as —SO H, —SO Na, or —SO2NH2. Acid dyes, solvent dyes, basic dyes, disperse dyes, fiber-reactive dyes, and vat dyes can have one or more sulfonic acid groups incorporated into their molecular stmcture. The raw materials used for the manufacture of dyes are mainly aromatic hydrocarbons (67—74) and include ben2ene, toluene, naphthalene, anthracene, pyrene, phenol (qv), pyridine, and carba2ole. Anthraquinone sulfonic acid is an important dye intermediate and is prepared by sulfonation of anthraquinone using sulfur trioxide and sulfuric acid. [Pg.79]

Aerobic, Anaerobic, and Combined Systems. The vast majority of in situ bioremediations ate conducted under aerobic conditions because most organics can be degraded aerobically and more rapidly than under anaerobic conditions. Some synthetic chemicals are highly resistant to aerobic biodegradation, such as highly oxidized, chlorinated hydrocarbons and polynuclear aromatic hydrocarbons (PAHs). Examples of such compounds are tetrachloroethylene, TCE, benzo(a)pyrene [50-32-8] PCBs, and pesticides. [Pg.170]

Polycyclic aromatic hydrocarbons have been classified as human carcinogens because they induce cancers in experimental animals and because smoking and exposure to mixtures of chemicals containing polycyclic aromatic hydrocarbons in the workplace increase the risk of lung cancer in exposed individuals. In experimental animals, benzo(a)pyrene induces cancer in different organs depending on the route of administration.Furthermore, exposure to polycyclic aromatic hydrocarbons commonly occurs in occupations related to traffic (use of diesel engines in transportation and railways). [Pg.335]

Fig. 42 Chromatogram of polycyclic aromatic hydrocarbons on caffeine-impregnated precoated silica gel 60 HPTLC plates with concentrating zone (Merck). The following can be recognized in increasing Rf value. — 1. benzo(ghi)perylene, 2. indeno(l,2,3-cd)pyrene, 3 benzo(a)pyrene, 4. benzo(b)fluoranthene, 5. benzo(k)fluoranthene, 6. fluoranthene. Fig. 42 Chromatogram of polycyclic aromatic hydrocarbons on caffeine-impregnated precoated silica gel 60 HPTLC plates with concentrating zone (Merck). The following can be recognized in increasing Rf value. — 1. benzo(ghi)perylene, 2. indeno(l,2,3-cd)pyrene, 3 benzo(a)pyrene, 4. benzo(b)fluoranthene, 5. benzo(k)fluoranthene, 6. fluoranthene.
Sodiiun dodecylsulfate, cetyltrimethylam-monium chloride, sodium cholate, -cyclodextrin dansylated amino acids and polycyclic aromatic hydrocarbons > 45-fold 1% in water the greatest enhancement of fluorescence is that of sodium cholate on pyrene [263]... [Pg.108]

One of the first reactions to be carried out in a molten salt (albeit at 270 °C) was the Scholl reaction. This involves the inter- or intramolecular coupling of two aromatic rings. A example of this reaction, in which 1-phenylpyrene was cyclized to indeno[l,2,3-cd]pyrene [26] is given in Scheme 5.1-7. A more elaborate version of the Scholl reaction is shown in Scheme 5.1-8 and involves bicyclization of an aromatic cumulene [27]. [Pg.178]

Besides aromatic hydrocarbons such as pyrene (above), benzanthracene (Becker et al., 1977a), benzoin derivatives (Baumann et al., 1982), aromatic and heteroaromatic ketones (Fomin et al., 1980 Baumann et al., 1985), azo dyes (Timpe et al., 1982), methylene blue (Becker et al., 1986 a Becker and Kohrs, 1990), acridine yellow... [Pg.280]

It is thought that the chlorination proceeds through a ir-com-plex between cupric chloride and anthracene, and that this complex then undergoes homolytic dissociation. Hence aromatic rings subject to attack by chlorine atoms can be chlorinated in this way. Thus one can convert pyrene to 1-chloropyrene (90% yield), but phenanthrene is not chlorinated. Analogous procedures using cupric bromide lead to 9-bromoanthracene (99% yield) and 1-bromopyrene (94% yield).7... [Pg.16]

Benzo[a]pyrene, a molecule with five, fused, hexagonal rings, is among the most carcinogenic of the polycyclic aromatic hydrocarbons (PAHs). Such biological activity may be related to the electronic structure of benzo[a]pyrene and its metabolites. Ionization energies of these molecules therefore have been investigated with photoelectron spectroscopy [28]. [Pg.43]

FIGURE 2.6 The procarcinogen benzo[a]pyrene oriented in the CYPlAl active site (stereo view) via n- n stacking between aromatic rings on the substrate and those of the complementary amino acid side chains, such that 7,8-epoxidation can occur. The substrate is shown with pale lines in the upper structures. The position of metabolism is indicated by an arrow in the lower structure (after Lewis 1996). [Pg.31]

Some examples of different types of hydrocarbons are given in Figure 9.1. Nonaromatic compounds without ring structure are termed aliphatic, whereas those with a ring structure (e.g., cyclohexane) are termed alicyclic. Aromatic hydrocarbons often consist of several fused rings, as in the case of benzo[a]pyrene. [Pg.181]


See other pages where Aromatic pyrene is mentioned: [Pg.279]    [Pg.244]    [Pg.8204]    [Pg.108]    [Pg.279]    [Pg.244]    [Pg.8204]    [Pg.108]    [Pg.1256]    [Pg.430]    [Pg.33]    [Pg.171]    [Pg.408]    [Pg.320]    [Pg.343]    [Pg.344]    [Pg.222]    [Pg.98]    [Pg.555]    [Pg.551]    [Pg.66]    [Pg.99]    [Pg.180]    [Pg.321]    [Pg.532]    [Pg.4]    [Pg.925]    [Pg.1077]    [Pg.1014]    [Pg.193]    [Pg.17]    [Pg.108]    [Pg.28]    [Pg.30]   
See also in sourсe #XX -- [ Pg.57 , Pg.59 , Pg.63 ]




SEARCH



Aromatic hydrocarbons benzo pyrene

Aromatic pyrene derivatives

© 2024 chempedia.info