Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds aniline

Many metalated aryl compounds are known to couple with aromatic compounds. Aniline derivatives react with ArPb(OAc)3, for example, to give the 2-arylani-line." Phenolic anions also react to form biaryls, with modest enantioselectivity in the presence of brucine." ... [Pg.718]

Shown below in Fig. 5.1 is what we now know about how aniline red was made from the three aromatic compounds, aniline, o-toluidine, and p-toluidine. The... [Pg.80]

Consecutively, the same group demonstrated that SPE can also be applied in an on-line combination with GC-MS. An example is the SPE-GC-MS analysis of 10 mL of river Rhine water spiked at the 0.5 pgL- level with 80 microcontaminants, such as chlorobenzenes, aromatic compounds, anilines, phenols and organonitrogen and organophosphorus pesticides. [Pg.845]

The operation of the nitronium ion in these media was later proved conclusively. "- The rates of nitration of 2-phenylethanesulphonate anion ([Aromatic] < c. 0-5 mol l i), toluene-(U-sulphonate anion, p-nitrophenol, A(-methyl-2,4-dinitroaniline and A(-methyl-iV,2,4-trinitro-aniline in aqueous solutions of nitric acid depend on the first power of the concentration of the aromatic. The dependence on acidity of the rate of 0-exchange between nitric acid and water was measured, " and formal first-order rate constants for oxygen exchange were defined by dividing the rates of exchange by the concentration of water. Comparison of these constants with the corresponding results for the reactions of the aromatic compounds yielded the scale of relative reactivities sho-wn in table 2.1. [Pg.10]

Ketones and alcohols are frequently used as alkylating agents Ketones often condense with two molecules of an aromatic compound through an alcohol intermediate [79, 20, 21] T,r,I -Trifluoroacetophenone and aniline afford 1,1 bis(4-ammophenyl) 1 phenyl 2,2,2-trifluoroethane [27] (equation 14)... [Pg.412]

Arenediazonium ions are relatively weak electrophiles, and therefore react only with electron-rich aromatic substrates like aryl amines and phenols. Aromatic compounds like anisole, mesitylene, acylated anilines or phenolic esters are ordinarily not reactive enough to be suitable substrates however they may be coupled... [Pg.85]

Hydro-de-diazoniation seems to be an unnecessary reaction from the synthetic standpoint, as arenediazonium salts are obtained from the respective amines, reagents that are normally synthesized from the hydrocarbon. Some aromatic compounds, however, cannot be synthesized by straightforward electrophilic aromatic substitution examples of these are the 1,3,5-trichloro- and -tribromobenzenes (see below). These simple benzene derivatives are synthesized from aniline via halogenation, diazotization and hydro-de-diazoniation. Furthermore hydro-de-diazoniation is useful for the introduction of a hydrogen isotope in specific positions. [Pg.222]

When aromatic compounds are reacted with hydrogen, the catalyst used determines which part of the molecule reacts. Thus, with the right catalyst, a nitro group can be converted to an amine without adding hydrogen to the ring. In this case the simplest aromatic amine (aniline) is produced. [Pg.78]

A wide variety of aromatic compounds can be brominated. Highly reactive ones, such as anilines and phenols, may undergo bromination at all activated positions. More selective reagents such as pyridinium bromide perbromide or tetraalkylammonium tribromides can be used in such cases.18 Moderately reactive compounds such as anilides, haloaromatics, and hydrocarbons can be readily brominated and the usual directing effects control the regiochemistry. Use of Lewis acid catalysts permits bromination of rings with deactivating substituents, such as nitro and cyano. [Pg.1009]

A general experimental procedure57 for a diarylmethane leuco compound via a benzotriazole To a stirred solution of the corresponding (benzotriazol-l-yl-methyl)aniline (5 mmol) in methanol (30 ml) under reflux was added a solution of the appropriate aromatic compound (5 mmol) and concentrated hydrochloric acid (1 ml) in water (30 ml). The resulting mixture was heated under reflux followed by the addition of aqueous KOH (1 M, 50ml). The product was isolated by filtration or by extraction with ether, and further purified by recrystallization or by column chromatography. [Pg.136]

The formation of 151 from the phosphonate 171 could be proved only by indirect means. Electron-rich aromatic compounds such as N,N-diethylaniline and N,N,N, N -tetraethyl-m-phenylenediamine U0 1I9> and N-methylaniline 120> are phosphorylated in the para- and in the ortho- plus para-positions by 151. Furthermore, 151 also adds to the nitrogen lone pair of aniline to form the corresponding phosphor-amidate. Considerable competition between nucleophiles of various strengths for the monomeric methyl metaphosphate 151 — e.g. aromatic substitution of N,N-diethylaniline and reaction with methanol or aromatic substitution and reaction with the nitrogen lone pair in N-methylaniline — again underline its extraordinary non-selectivity. [Pg.112]

In the area of ion sensing, cation recognition by electrodes containing functionalized redox-active polymers has been an area of considerable interest. Fabre and co-workers have reported the development of a boronate-functionalized polypyrrole as a fluoride anion-responsive electroactive polymer film. The electropolymerizable polypyrrole precursor (11) (Fig. 11) was synthesized by the hydroboration reaction of l-(phenylsulfonyl)-3-vinylpyrrole with diisopinocampheylborane followed by treatment with pinacol and the deprotection of the pyrrole ring.33 The same methodology was utilized for the production of several electropolymerizable aromatic compounds (of pyrrole (12) (Fig. 11), thiophene (13 and 14) (Fig. 11), and aniline) bearing boronic acid and boronate substituents as precursors of fluoride- and/or chloride-responsive conjugated polymer.34... [Pg.27]

Hydrogen peroxide Organic compounds (reference 2) Nitric acid Aromatic amines Nitrosyl perchlorate Organic materials Ozone Aromatic compounds Perchloric acid Aniline, etc. [Pg.779]

Benzene, aniline and other aromatic compounds give explosive gelatinous ozonides, among other products, on contact with ozonised oxygen. [Pg.1868]

Reaction of disulfonium dication 34 with electron donor aromatic compounds also affords products of substitution at the sulfonium atom. For example, reaction of dication 34 with aniline, phenol and triphenylamine leads to the corresponding para-substituted sulfonium salts 86 (Scheme 32).97... [Pg.430]

Aromatic compounds have very high molar absorptivities that usually lie in the vacuum ultraviolet region and are not useful for routine analysis. Modest absorption peaks are found between 200 and 300 nm. Substituted benxene compounds show dramatic effects from electron-withdrawing substituents. These substituents are known as auxo-chromes since they do not absorb electromagnetic radiation but they have a significant effect on the main chromophore. For example, phenol and aniline have molar absorptivities that are six times the molar absorptivity of benzene or toluene at similar wavelengths. [Pg.126]

The nitrosonium cation can serve effectively either as an oxidant or as an electrophile towards different aromatic substrates. Thus the electron-rich polynuclear arenes suffer electron transfer with NO+BF to afford stable arene cation radicals (Bandlish and Shine, 1977 Musker et al., 1978). Other activated aromatic compounds such as phenols, anilines and indoles undergo nuclear substitution with nitrosonium species that are usually generated in situ from the treatment of nitrites with acid. It is less well known, but nonetheless experimentally established (Hunziker et al., 1971 Brownstein et al., 1984), that NO+ forms intensely coloured charge-transfer complexes with a wide variety of common arenes (30). For example, benzene, toluene,... [Pg.224]

Here we encounter a specific property of the aromatic compounds. In the aliphatic series diazonium salts are unknown because here substances of the aniline type —C=C— cannot exist. [Pg.271]

Sandmeyer s synthesis of aromatic nitriles is far more elegant than the removal of water from the ammonium salts of carboxylic acids, which latter reaction is also applicable to benzene derivatives. In particular, the former synthesis permits of the preparation of carboxylic acids via the nitriles, and so provides a complete substitute for Kolbe s synthesis (alkyl halide and potassium cyanide), which is inapplicable to aromatic compounds. The simplest example is the conversion of aniline into benzoic add. The converse transformation is Hofmann s degradation (benzamide aniline, see p. 152). [Pg.293]

Electron-rich aromatic compounds, such as phenol, anisole and A,./V-dimethylaniline, add to bis(2-trichloroethyl) azodicarboxylate under the influence of lithium perchlorate, boron trifluoride etherate or zinc chloride to yield para-substituted products 74, which are transformed into the anilines 75 by means of zinc and acetic acid86. Triflic acid (trifluoromethanesulphonic acid) catalyses the reactions of phenyl azide with benzene, toluene, chlorobenzene and naphthalene, to give TV-arylanilines (equation 34)87. [Pg.550]

This transformation avoids problems with the change of polarity during the reaction, which occurred in the telomerization, because two aromatic compounds react with each other to form a new aromatic product. The synthesis of 4-nitrodiphenylamine via a Pd-catalyzed Buchwald-Hartwig-type amina-tion from 4-chloronitrobenzene and aniline was chosen as the next test reaction in a cooperation with Lanxess as industrial partner of the network (Scheme 5). [Pg.33]

Phenols (p-cresol, guaiacol, pyrogallol, catechol) and aromatic amines (aniline, p-tolidine, o-phenyldiamine, o-dianisidine) are typical substrates for peroxidases [90 -109]. These compounds are oxidized by hydrogen peroxide or hydroperoxides under peroxidase catalysis to generate radicals, which after diffusion from the active center of the enzyme react with further aromatic substrates to form dimeric, oligomeric or polymeric products. [Pg.88]


See other pages where Aromatic compounds aniline is mentioned: [Pg.215]    [Pg.182]    [Pg.814]    [Pg.916]    [Pg.215]    [Pg.182]    [Pg.814]    [Pg.916]    [Pg.108]    [Pg.53]    [Pg.270]    [Pg.16]    [Pg.20]    [Pg.948]    [Pg.274]    [Pg.332]    [Pg.701]    [Pg.213]    [Pg.449]    [Pg.4]    [Pg.410]    [Pg.12]    [Pg.203]    [Pg.487]    [Pg.90]    [Pg.204]    [Pg.251]    [Pg.145]    [Pg.146]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Anilines compounds

Nitro-aniline compounds, aromatic

© 2024 chempedia.info