Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compound branches

Cracked gasoline FCC gasoline Composed of paraffinic, olefinic, and aromatic compounds branched compounds are present in a relatively high amount typically has a higher RON than MON high-olefin-content FCC gasoline can lead to gum formation and fuel color degradation. [Pg.40]

Uses. Fluorosulfuric acid serves as catalyst in the alkylation (qv) of branched-chain paraffins (53—58) and aromatic compounds (59), and in the polymeriza tion of monoolefins (60) and rosin (61). Addition of strong Lewis acids, such as SbF, TaF, and NbF, to fluorosulfuric acid markedly increases... [Pg.249]

Conceptually at least, these compounds can be obtained via initial enantioselective hydroformylation of the appropriate vinyl aromatic to branched chiral aldehyde and subsequent oxidation. [Pg.471]

However, it has provided some interesting results. At the top of the tree, the molecule population is first divided according to the presence or absence of the attribute NH2 (primary amine). If the answer is yes , the developed branches (on the right of the tree) mostly leads to the Crownpak CSP. The next attribute is Aromatic . If the answer is no , here the predominant CSP is Chiralpak AD. Aromatic compounds form the largest part of the tree and as expected the dominant CSP is Chiralcel OD which is disseminated in almost every region of the tree. [Pg.121]

Naphthas obtained from cracking units generally contain variable amounts of olefins, higher ratios of aromatics, and branched paraffins. Due to presence of unsaturated compounds, they are less stable than straight-mn naphthas. On the other hand, the absence of olefins increases the stability of naphthas produced by hydrocracking units. In refining operations, however, it is customary to blend one type of naphtha with another to obtain a required product or feedstock. [Pg.43]

Aromatic organic chemistry is a special branch of organic chemistry because the six-membered carbon rings that define aromatic compounds are exceptionally stable and act as central supports to which other groups can be attached. The name aromatic was given to early isolated examples of these compounds because they have characteristic odors. [Pg.73]

The analysis of experimental results by simple linear regression provide an equation from which the estimation is straightforward. Nevertheless, to obtain an accurate model, an equation for each structural type is needed. Thus, for hydrocarbons, which are one of the best examples for this approach, an equation for linear saturated hydrocarbons is required, one for the branched ones, and one for the cyclic compounds. The same is needed for unsaturated, then aromatic compounds etc. The more the study is based on a precise structural type, the better the linear adjustment and the better the forecast standard deviation but at the same time there will be fewer points with which to calculate the model and the forecast standard deviation will be higher. It is not simple to find a compromise and it was decided to give up on this approach as soon as the relevance of the Hass model was noted. [Pg.61]

The Shikimate pathway is responsible for biosynthesis of aromatic amino acids in bacteria, fungi and plants [28], and the absence of this pathway in mammals makes it an interesting target for designing novel antibiotics, fungicides and herbicides. After the production of chorismate the pathway branches and, via specific internal pathways, the chorismate intermediate is converted to the three aromatic amino acids, in addition to a number of other aromatic compounds [29], The enzyme chorismate mutase (CM) is a key enzyme responsible for the Claisen rearrangement of chorismate to prephenate (Scheme 1-1), the first step in the branch that ultimately leads to production of tyrosine and phenylalanine. [Pg.4]

One method (EPA 8020) that is suitable for volatile aromatic compounds is often referred to as benzene-toluene-ethylbenzene-xylene analysis, although the method includes other volatile aromatics. The method is similar to most volatile organic gas chromatographic methods. Sample preparation and introduction is typically by purge-and-trap analysis (EPA 5030). Some oxygenates, such as methyl-f-butyl ether (MTBE), are also detected by a photoionization detector, as well as olefins, branched alkanes, and cycloalkanes. [Pg.202]

In this section, you iearned about the reactions of aikenes, aikynes, aromatic compounds, aicohois, aidehydes, ketones, carboxyiic acids, amides, and esters. You iearned how to use Markovnikov s ruie to predict the major product of an eiimination reaction. You aiso iearned how to predict the products of other types of reactions. In the next section, you will encounter a special branch of organic chemistry, which deals with much larger molecules. [Pg.79]

Rule of thumb The stability of molecular ions roughly decreases in the following order aromatic compounds > conjugated alkenes > alkenes > alicyclic compounds > carbonyl compounds > linear alkanes > ethers > esters > amines > carboxylic acids > alcohols > branched alkanes. [81]... [Pg.263]

Aromatic compounds and their reactions are a big part of any Organic 11 course. We introduce you to the aromatic family, including the heterocyclic branch, in Chapter 6. (You may want to brush up on the concept of resonance beforehand.) Then in Chapters 7 and 8, you find out more than you ever wanted to know about aromatic substitution reactions, starring electrophiles and nucleophiles. [Pg.15]

When we have obtained a good correlation for normal paraffins, we would naturally want to know if we can extend this to the branched paraffins, and onward to the population of all the saturated hydrocarbons (by including the cyclic paraffins), and onward to the population of all hydrocarbons (by including olefins, acetylenes, and aromatic compounds), and then onward to the population of all organic compounds (by including compounds with heteroatoms, such as O, N, Cl). A correlation that applies accurately to a larger domain is more useful than one that works only for a smaller domain. [Pg.154]

Aromatic compounds are typically no more than 15% of the total weight of most crude oil. The branched or alkylated aromatic derivatives are more prevalent than the nonalkylated aromatics. For example, toluene and xylene are found in higher percentages than benzene. Also, monoaromatic compounds such as toluene and xylene are some of the most common of the aromatics in crude. [Pg.34]

The hydrocarbon composition of the fuel can influence sensitivity. Fuels containing higher percentages of unsaturated and aromatic compounds typically have high sensitivity. Linear paraffins in fuels are less sensitive, while highly branched paraffins can be more sensitive. TABLE 3-4 contains information on the sensitivity of various fuel components. [Pg.42]

The presence of high-molecular-weight compounds such as waxes, polycyclic aromatics, highly branched hydrocarbons, and certain polymeric additives can increase the viscosity of a fuel. These compounds have a high resistance to flow. For example, a residual fuel oil with a viscosity greater than 1,100 cSt 104°F (40°C) may be difficult to pump due to high percentages of asphaltic and paraffinic hydrocarbons. [Pg.114]

The exchange of a considerable number of linear, branched-chain, and cyclic alkanes have been studied (5i). The exchange rate increases with increase in the carbon chain length forn-alkanes (methane to hexane). It is found that there is a linear correlation between the logarithm of the exchange rate and the ionization potential of the alkane (Fig. 5 n-alkanes are plotted as circles). This correlation extends to aromatic compounds (Fig. 5 aromatic compounds are plotted as squares) and is evidence that alkanes and aromatic compounds react by a common mechanism. Indeed, the least reactive aromatic, benzene, is only about... [Pg.172]


See other pages where Aromatic compound branches is mentioned: [Pg.4]    [Pg.311]    [Pg.4]    [Pg.311]    [Pg.383]    [Pg.374]    [Pg.66]    [Pg.96]    [Pg.322]    [Pg.100]    [Pg.1567]    [Pg.822]    [Pg.625]    [Pg.273]    [Pg.45]    [Pg.45]    [Pg.285]    [Pg.111]    [Pg.99]    [Pg.52]    [Pg.190]    [Pg.258]    [Pg.174]    [Pg.84]    [Pg.169]    [Pg.350]    [Pg.265]    [Pg.285]    [Pg.362]    [Pg.9]    [Pg.250]    [Pg.251]    [Pg.1237]    [Pg.58]   
See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.89 ]




SEARCH



© 2024 chempedia.info