Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic benzoic acids

Epitaxial crystallization of polymers has been investigated for a wide variety of substrates minerals (alkali halides, talc, mica, and so on), low molecular weight organic materials (condensed and linear aromatics, benzoic acid and many of its substituted variants and their salts or hemiacids, other organic molecules of different types), and other crystalline polymers. [Pg.24]

Hammen equation A correlation between the structure and reactivity in the side chain derivatives of aromatic compounds. Its derivation follows from many comparisons between rate constants for various reactions and the equilibrium constants for other reactions, or other functions of molecules which can be measured (e g. the i.r. carbonyl group stretching frequency). For example the dissociation constants of a series of para substituted (O2N —, MeO —, Cl —, etc.) benzoic acids correlate with the rate constant k for the alkaline hydrolysis of para substituted benzyl chlorides. If log Kq is plotted against log k, the data fall on a straight line. Similar results are obtained for meta substituted derivatives but not for orthosubstituted derivatives. [Pg.199]

It should be noted that aliphatic compounds (except the paraffins) are usually oxidised by concentrated nitric acid, whereas aromatic compounds (including the hydrocarbons) are usually nitrated by the concentrated acid (in the presence of sulphuric acid) and oxidised by the dilute acid. As an example of the latter, benzaldehyde, CjHsCHO, when treated with concentrated nitric acid gives ffi-nitrobenzaldehyde, N02CgH4CH0, but with dilute nitric acid gives benzoic acid, CgHgCOOH. [Pg.112]

Oxidation of a side chain by alkaline permanganate. Aromatic hydrocarbons containing side chains may be oxidised to the corresponding acids the results are generally satisfactory for compounds with one side chain e.g., toluene or ethylbenzene -> benzoic acid nitrotoluene -> nitrobenzoic acid) or with two side chains e.g., o-xylene -> phthalic acid). [Pg.520]

Many aromatic compounds are sufficiently basic to be appreciably protonated in concentrated sulphuric acid. If nitration occurs substantially through the free base, then the reactivity of the conjugate acid will be negligible. Therefore, increasii the acidity of the medium will, by depleting the concentration of the free base, reduce the rateof reaction. This probably accounts for the particularly marked fall in rate which occurs in the nitration of anthraquinone, benzoic acid, benzenesulphonic acid, and some nitroanilines (see table 2.4). [Pg.16]

The best-known equation of the type mentioned is, of course, Hammett s equation. It correlates, with considerable precision, rate and equilibrium constants for a large number of reactions occurring in the side chains of m- and p-substituted aromatic compounds, but fails badly for electrophilic substitution into the aromatic ring (except at wi-positions) and for certain reactions in side chains in which there is considerable mesomeric interaction between the side chain and the ring during the course of reaction. This failure arises because Hammett s original model reaction (the ionization of substituted benzoic acids) does not take account of the direct resonance interactions between a substituent and the site of reaction. This sort of interaction in the electrophilic substitutions of anisole is depicted in the following resonance structures, which show the transition state to be stabilized by direct resonance with the substituent ... [Pg.137]

Alkyl groups attached to aromatic rings are oxidized more readily than the ring in alkaline media. Complete oxidation to benzoic acids usually occurs with nonspecific oxidants such as KMnO, but activated tertiary carbon atoms can be oxidized to the corresponding alcohols (R. Stewart, 1965 D. Arndt, 1975). With mercury(ll) acetate, allyiic and benzylic oxidations are aJso possible. It is most widely used in the mild dehydrogenation of tertiary amines to give, enamines or heteroarenes (M. Shamma, 1970 H. Arzoumanian. 1971 A. Friedrich, 1975). [Pg.120]

Decarbonylation of aromatic aldehydes proceeds smoothly[71], Terephthalic acid (86), commercially produced by the oxidation of p-.xylene (85), contains p-formylbenzoic acid (87) as an impurity, which is removed as benzoic acid (88) by Pd-catalyzed decarbonylation at a high temperature. The benzoic acid produced by the decarbonylation can be separated from terephthalic acid (86) based on the solubility difference in water[72]. [Pg.537]

As discussed earlier in Section lOC.l, ultraviolet, visible and infrared absorption bands result from the absorption of electromagnetic radiation by specific valence electrons or bonds. The energy at which the absorption occurs, as well as the intensity of the absorption, is determined by the chemical environment of the absorbing moiety. Eor example, benzene has several ultraviolet absorption bands due to 7t —> 71 transitions. The position and intensity of two of these bands, 203.5 nm (8 = 7400) and 254 nm (8 = 204), are very sensitive to substitution. Eor benzoic acid, in which a carboxylic acid group replaces one of the aromatic hydrogens, the... [Pg.402]

Acylation. Aromatic amines react with acids, acid chlorides, anhydrides, and esters to form amides. In general, acid chlorides give the best yield of the pure product. The reaction with acetic, propionic, butanoic, or benzoic acid can be catalyzed with phosphoms oxychloride or trichloride. [Pg.229]

Styrene undergoes many reactions of an unsaturated compound, such as addition, and of an aromatic compound, such as substitution (2,8). It reacts with various oxidising agents to form styrene oxide, ben2aldehyde, benzoic acid, and other oxygenated compounds. It reacts with benzene on an acidic catalyst to form diphenylethane. Further dehydrogenation of styrene to phenylacetylene is unfavorable even at the high temperature of 600°C, but a concentration of about 50 ppm of phenylacetylene is usually seen in the commercial styrene product. [Pg.477]

Benzoic acid [65-85-0] C H COOH, the simplest member of the aromatic carboxyHc acid family, was first described in 1618 by a French physician, but it was not until 1832 that its stmcture was deterrnined by Wn b1er and Liebig. In the nineteenth century benzoic acid was used extensively as a medicinal substance and was prepared from gum benzoin. Benzoic acid was first produced synthetically by the hydrolysis of benzotrichloride. Various other processes such as the nitric acid oxidation of toluene were used until the 1930s when the decarboxylation of phthaUc acid became the dominant commercial process. During World War II in Germany the batchwise Hquid-phase air oxidation of toluene became an important process. [Pg.52]

Ben /ben ate [120-51-4] CgH COOCH2CgH, mp, 21°C, cff , 1.118 bp, 323—324°C at 101.3 kPa , 1.5681. This is a colorless, oily liquid with a faiat, pleasant aromatic odor and a sharp, burning taste. It occurs naturally iu Pern and Tolu balsams, is spariugly volatile with steam, and is iusoluble iu water. Benzyl benzoate is prepared commercially by the direct esterification of benzoic acid and benzyl alcohol or by reaction of benzyl chloride and sodium benzoate. The pleasant odor of benzyl benzoate, like other benzoic esters, has long been utilized iu the perfume iadustry, where it is employed as a solvent for synthetic musks and as a fixative. It has also been used iu confectionery and chewing gum flavors. [Pg.57]

Aromatic carboxyUc acids are produced annually in amounts of several million metric tons. Several aromatic acids occur naturally, eg, benzoic acid (qv), sahcyhc acid (qv), cinnamic acid (qv), and gaUic acids, but those used in commerce are produced synthetically. These acids are generally crystalline sohds with relatively high melting points, attributable to the rigid, planar, aromatic nucleus (see Phthalic acids). [Pg.82]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

In a series of organic acids of similar type, not much tendency exists for one acid to be more reactive than another. For example, in the replacement of stearic acid in methyl stearate by acetic acid, the equilibrium constant is 1.0. However, acidolysis in formic acid is usually much faster than in acetic acid, due to higher acidity and better ionizing properties of the former (115). Branched-chain acids, and some aromatic acids, especially stericaHy hindered acids such as ortho-substituted benzoic acids, would be expected to be less active in replacing other acids. Mixtures of esters are obtained when acidolysis is carried out without forcing the replacement to completion by removing one of the products. The acidolysis equilibrium and mechanism are discussed in detail in Reference 115. [Pg.383]

The procedures as outlined are applicable to both the aliphatic and aromatic series. They are superior to the common interchange method in that they avoid the fractional distillation which is very troublesome in the aliphatic series. They have been used in numerous instances and can be adapted to give mixed anli3"drides. Benzoic anhydride has been obtained, by closely related procedures, from benzoic acid and benzoyl chloride by heating under reduced pressure or in the presence of zinc chloride. [Pg.3]

The present method for preparing aromatic dicarboxylic acids has been used to convert phthalic or isophthalic acid to tereph-thalic acid (90-95%) 2,2 -biphenyldicarboxylic acid to 4,4 -biphenyldicarboxylic acid 3,4-pyrroledicarboxylic acid to 2,5-pyr-roledicarboxylic acid and 2,3-pyridinedicarboxylic acid to 2,5-pyridinedicarboxylic acid. A closely related method for preparing aromatic dicarboxylic acids is the thermal disproportionation of the potassium salt of an aromatic monocarboxylic acid to an equimolar mixture of the corresponding aromatic hydrocarbon and the dipotassium salt of an aromatic dicarboxylic acid. The disproportionation method has been used to convert benzoic acid to terephthalic acid (90-95%) pyridine-carboxylic acids to 2,5-pyridinedicarboxylic acid (30-50%) 2-furoic acid to 2,5-furandicarboxylic acid 2-thiophenecar-boxylic acid to 2,5-thiophenedicarboxylic acid and 2-quinoline-carboxylic acid to 2,4-quinolinedicarboxylic acid. One or the other of these two methods is often the best way to make otherwise inaccessible aromatic dicarboxylic acids. The two methods were recently reviewed. ... [Pg.73]

Analogous plots for many other reactions of aromatic compounds show a similar linear correlation with the acid dissociation constants of the corresponding benzoic acids. [Pg.204]

The classic example, and still the most useful one, of a LFER is the Hammett equation, which correlates rates and equilibria of many side-chain reactions of meta- and para-substituted aromatic compounds. The standard reaction is the aqueous ionization equilibrium at 25°C of meta- and para-substituted benzoic acids. [Pg.315]

Reactions that occur with the development of an electron deficiency, such as aromatic electrophilic substitutions, are best correlated by substituent constants based on a more appropriate defining reaction than the ionization of benzoic acids. Brown and Okamoto adopted the rates of solvolysis of substituted phenyldimeth-ylcarbinyl chlorides (r-cumyl chlorides) in 90% aqueous acetone at 25°C to define electrophilic substituent constants symbolized o-. Their procedure was to establish a conventional Hammett plot of log (.k/k°) against (t for 16 /wcra-substituted r-cumyl chlorides, because meta substituents cannot undergo significant direct resonance interaction with the reaction site. The resulting p value of —4.54 was then used in a modified Hammett equation. [Pg.321]

Phenyl radicals can be generated by the thermal decomposition of lead tctrabcnzoate, phenyl iodosobenzoate, and diphenyliodonium hydroxide,- - and by the electrolysis of benzoic acid.- These methods have been employed in the arylation of aromatic compounds, including heterocycles. A method of promise which has not been applied to the arylation of heterocycles is the formation of aryl radicals by the photolysis of aromatic iodides at 2537... [Pg.135]

This last result bears also on the mode of conversion of the adduct to the final substitution product. As written in Eq. (10), a hydrogen atom is eliminated from the adduct, but it is more likely that it is abstracted from the adduct by a second radical. In dilute solutions of the radical-producing species, this second radical may be the adduct itself, as in Eq. (12) but when more concentrated solutions of dibenzoyl peroxide are employed, the hydrogen atom is removed by a benzoyloxy radical, for in the arylation of deuterated aromatic compounds the deuterium lost from the aromatic nucleus appears as deuterated benzoic acid, Eq. (13).The over-all reaction for the phenylation of benzene by dibenzoyl peroxide may therefore be written as in Eq, (14). [Pg.138]


See other pages where Aromatic benzoic acids is mentioned: [Pg.294]    [Pg.256]    [Pg.9]    [Pg.216]    [Pg.1818]    [Pg.410]    [Pg.135]    [Pg.294]    [Pg.256]    [Pg.9]    [Pg.216]    [Pg.1818]    [Pg.410]    [Pg.135]    [Pg.97]    [Pg.193]    [Pg.356]    [Pg.380]    [Pg.395]    [Pg.447]    [Pg.224]    [Pg.35]    [Pg.61]    [Pg.98]    [Pg.374]    [Pg.206]    [Pg.274]    [Pg.252]    [Pg.281]    [Pg.382]    [Pg.164]    [Pg.522]    [Pg.117]    [Pg.808]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Aromatic derived from benzoic acids

Benzoic acids aromatic compounds benzoylation

© 2024 chempedia.info