Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous solutions element

We may predict many redox reactions of metals by using an activity series. An activity series lists reactions showing how various metals and hydrogen oxidize in aqueous solution. Elements at the top of the series are more reactive (active) than elements below. A reaction occurs when an element interacts with a cation of an element lower in the series. The more active elements have a stronger tendency to oxidize than the less active elements. The less active elements tend to reduce instead of oxidize. The reduction reactions are the reverse of the oxidation reactions given in the activity series table, Table 4-1. This is an abbreviated table. Refer to your textbook for a more complete table. [Pg.57]

The general characteristics of all these elements generally preclude their extraction by any method involving aqueous solution. For the lighter, less volatile metals (Li, Na, Be, Mg, Ca) electrolysis of a fused salt (usually the chloride), or of a mixture of salts, is used. The heavier, more volatile metals in each group can all be similarly obtained by electrolysis, but it is usually more convenient to take advantage of their volatility and obtain them from their oxides or chlorides by displacement, i.e. by general reactions such as... [Pg.122]

Each of these elements can be extracted by reduction of the respective oxide at high temperature, using either carbon or hydrogen or by electrolysis of an aqueous solution of a salt of the required element. [Pg.143]

Amorphous boron and the amphoteric elements, aluminium and gallium, are attacked by aqueous solutions of sodium hydroxide and... [Pg.143]

Silicon, germanium, tin and lead can make use of unfilled d orbitals to expand their covalency beyond four and each of these elements is able (but only with a few ligands) to increase its covalency to six. Hence silicon in oxidation state -f-4 forms the octahedral hexafluorosilicate complex ion [SiFg] (but not [SiCl] ). Tin and lead in oxidation state -1-4 form the hexahydroxo complex ions, hexahydroxostannate(IV). [Sn(OH) ] and hexahydroxoplum-bate(IV) respectively when excess alkali is added to an aqueous solution containing hydrated tin(IV) and lead(IV) ions. [Pg.163]

It reduces the halogen elements in aqueous solution depositing sulphur ... [Pg.283]

Since the hydrogen-element bond energy decreases from sulphur to tellurium they are stronger acids than hydrogen sulphide in aqueous solution but are still classified as weak acids—similar change in acid strength is observed for Group Vll hydrides. [Pg.284]

These closely resemble the corresponding sulphides. The alkali metal selenides and tellurides are colourless solids, and are powerful reducing agents in aqueous solution, being oxidised by air to the elements selenium and tellurium respeetively (cf. the reducing power of the hydrides). [Pg.288]

Many of the reactions of halogens can be considered as either oxidation or displacement reactions the redox potentials (Table 11.2) give a clear indication of their relative oxidising power in aqueous solution. Fluorine, chlorine and bromine have the ability to displace hydrogen from hydrocarbons, but in addition each halogen is able to displace other elements which are less electronegative than itself. Thus fluorine can displace all the other halogens from both ionic and covalent compounds, for example... [Pg.325]

Table 14.2 shows that all three elements have remarkably low melting points and boiling points—an indication of the weak metallic bonding, especially notable in mercury. The low heat of atomisation of the latter element compensates to some extent its higher ionisation energies, so that, in practice, all the elements of this group can form cations in aqueous solution or in hydrated salts anhydrous mercuryfll) compounds are generally covalent. [Pg.434]

Atomization The most important difference between a spectrophotometer for atomic absorption and one for molecular absorption is the need to convert the analyte into a free atom. The process of converting an analyte in solid, liquid, or solution form to a free gaseous atom is called atomization. In most cases the sample containing the analyte undergoes some form of sample preparation that leaves the analyte in an organic or aqueous solution. For this reason, only the introduction of solution samples is considered in this text. Two general methods of atomization are used flame atomization and electrothermal atomization. A few elements are atomized using other methods. [Pg.412]

The actinide elements exhibit uniformity in ionic types. In acidic aqueous solution, there are four types of cations, and these and their colors are hsted in Table 5 (12—14,17). The open spaces indicate that the corresponding oxidation states do not exist in aqueous solution. The wide variety of colors exhibited by actinide ions is characteristic of transition series of elements. In general, protactinium(V) polymerizes and precipitates readily in aqueous solution and it seems unlikely that ionic forms ate present in such solutions. [Pg.218]

The equihbrium constant of this reaction is 5.4 x 10 at 25°C, ie, iodine hydrolyzes to a much smaller extent than do the other halogens (49). The species concentrations are highly pH dependent at pH = 5, about 99% is present as elemental at pH = 7, the and HIO species are present in almost equal concentrations and at pH = 8, only 12% is present as and 88% as HIO. The dissociation constant for HIO is ca 2.3 x 10 and the pH has tittle effect on the lO ion formation. At higher pH values, the HIO converts to iodate ion. This latter species has been shown to possess no disinfection activity. An aqueous solution containing iodate, iodide, and a free iodine or triodide ion has a pH of about 7. A thorough discussion of the kinetics of iodine hydrolysis is available (49). [Pg.361]

W. M. Latimer, The Oxidation Potentials of the Elements and their Potentials in Aqueous Solutions, Prentice-HaH, Inc., Englewood Chffs, N.J., 1938. [Pg.368]

Selective Reduction. In aqueous solution, europium(III) [22541 -18-0] reduction to europium(II) [16910-54-6] is carried out by treatment with amalgams or zinc, or by continuous electrolytic reduction. Photochemical reduction has also been proposed. When reduced to the divalent state, europium exhibits chemical properties similar to the alkaline-earth elements and can be selectively precipitated as a sulfate, for example. This process is highly selective and allows production of high purity europium fromlow europium content solutions (see Calcium compounds Strontiumand strontium compounds). [Pg.544]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

However, the peroxomonophosphate ion decomposes relatively rapidly ia aqueous solution. A mixture of peroxodiphosphoric and peroxomonophoshoric acids can be produced by treatiag a cold phosphoric acid solution with elemental fluorine (qv) (49). Peroxodiphosphoric acid is not produced commercially. Ammonium, lithium, sodium, potassium, mbidium, cesium, barium, 2iac, lead, and silver salts have all been reported. The crystal stmctures of the ammonium, lithium, sodium, and potassium compounds, which crysta11i2e with varyiag numbers of water molecules, have been determined (50). [Pg.94]

One of the principal aspects of refinery gas cleanup is the removal of acid gas constituents, ie, carbon dioxide, CO2, and hydrogen sulfide, H2S. Treatment of natural gas to remove the acid gas constituents is most often accompHshed by contacting the natural gas with an alkaline solution. The most commonly used treating solutions are aqueous solutions of the ethanolamines or alkah carbonates. There are several hydrogen sulfide removal processes (29), most of which are followed by a Claus plant that produces elemental sulfur from the hydrogen sulfide. [Pg.209]

Flotation Reagents. Only one sulfide mineral flotation collector is manufactured from phosphine, ie, the sodium salt of bis(2-methylpropyl)phosphinodithioic acid [13360-78-6]. It is available commercially from Cytec Industries Inc. as a 50% aqueous solution and is sold as AEROPHINE 3418A promoter. The compound is synthesized by reaction of 2-methyl-1-propene [115-11-7] with phosphine to form an iatermediate dialkylphosphine which is subsequently treated with elemental sulfur [7704-34-9] and sodium hydroxide [1310-73-2] to form the final product (14). The reactions described ia equations 10 and 11... [Pg.319]

Only slightly less accurate ( 0.3—0.5%) and more versatile in scale are other titration techniques. Plutonium maybe oxidized in aqueous solution to PuO " 2 using AgO, and then reduced to Pu" " by a known excess of Fe", which is back-titrated with Ce" ". Pu" " may be titrated complexometricaHy with EDTA and a colorimetric indicator such as Arsenazo(I), even in the presence of a large excess of UO " 2- Solution spectrophotometry (Figs. 4 and 5) can be utilized if the plutonium oxidation state is known or controlled. The spectrophotometric method is very sensitive if a colored complex such as Arsenazo(III) is used. Analytically usehil absorption maxima and molar absorption coefficients ( s) are given in Table 10. Laser photoacoustic spectroscopy has been developed for both elemental analysis and speciation (oxidation state) at concentrations of lO " — 10 M (118). Chemical extraction can also be used to enhance this technique. [Pg.200]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

AT the path length, and P (A) the mass absorption coefficient at wavelength A. Between absorption edges, P (A) is proportional to Z A and is nearly independent of physical or chemical state. An absorption measurement on each side of an absorption edge is required for each element analyzed. X-ray absorption is especially useful in determining heavy elements in mixed materials of lower Z, such as lead in gasoline and uranium in aqueous solution. [Pg.320]


See other pages where Aqueous solutions element is mentioned: [Pg.118]    [Pg.121]    [Pg.265]    [Pg.4]    [Pg.177]    [Pg.181]    [Pg.118]    [Pg.121]    [Pg.265]    [Pg.4]    [Pg.177]    [Pg.181]    [Pg.104]    [Pg.203]    [Pg.353]    [Pg.416]    [Pg.139]    [Pg.249]    [Pg.285]    [Pg.1093]    [Pg.203]    [Pg.209]    [Pg.217]    [Pg.218]    [Pg.172]    [Pg.172]    [Pg.208]    [Pg.26]    [Pg.478]    [Pg.249]    [Pg.436]    [Pg.93]    [Pg.176]    [Pg.332]    [Pg.210]   
See also in sourсe #XX -- [ Pg.375 ]




SEARCH



Partitioning of Elements Between Aqueous Solution and Crystal

© 2024 chempedia.info