Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications polyaromatic hydrocarbons

Much of the study of ECL reactions has centered on two areas electron transfer reactions between certain transition metal complexes, and radical ion-annihilation reactions between polyaromatic hydrocarbons. ECL also encompasses the electrochemical generation of conventional chemiluminescence (CL) reactions, such as the electrochemical oxidation of luminol. Cathodic luminescence from oxide-covered valve metal electrodes is also termed ECL in the literature, and has found applications in analytical chemistry. Hence this type of ECL will also be covered here. [Pg.212]

As yet, the number of applications is limited but is likely to grow as instrumentation, mostly based on existing CE systems, and columns are improved and the theory of CEC develops. Current examples include mixtures of polyaromatic hydrocarbons, peptides, proteins, DNA fragments, pharmaceuticals and dyes. Chiral separations are possible using chiral stationary phases or by the addition of cyclodextrins to the buffer (p. 179). In theory, the very high efficiencies attainable in CEC mean high peak capacities and therefore the possibility of separating complex mixtures of hundreds of... [Pg.648]

Sometimes orthogonal offline SPE steps were used prior to online SPE LC/MS/MS. These preparation steps were used to remove interference and concentrate samples. In an application to measure urinary N7-(benzo[a]pyren-6-yl)guanine (BP-6-N7Gua), a biomarker for exposure to polyaromatic hydrocarbons (PAHs), a two-step offline SPE was first performed using Sep-Pak C8 (Waters, Milford, Massachusetts) and Strata SCX (Phenomenex, Torrance, California) cartridges to obtain high sensitivity (Chen et al. 2005). The extracts were applied to an online reversed phase SPE LC/MS system. The lower limit of detection was 2.5 fmol/mL when 10 mL of urine was used. [Pg.283]

Spectrofluorimetric methods are applicable to the determination of aliphatic hydrocarbons, and humic and fulvic acids in soil, aliphatic hydrocarbons polyaromatic hydrocarbons, optical whiteners, and selenium in non-saline sediments, aliphatic aromatic and polyaromatic hydrocarbons and humic and fulvic acids in saline sediments. The only application found in luminescence spectroscopy is the determination of polychlorobiphenyl in soil. Generally speaking, concentrations down to the picogram (pg L 1), level can be determined by this technique with recovery efficiencies near f00%. [Pg.26]

Despite the advances made in high-performance liquid chromatography in recent years, there are still occasionally applications in which conventional column chromatography is employed. These methods lack the sensitivity, resolution and automation of HPLC. They include the determination of urea herbicides in soil, polyaromatic hydrocarbons, carbohydrates, chloroaliphatic compounds and humic and fulvic acids in non-saline sediments. The technique has also been applied in sludge analysis, e.g. aliphatic hydrocarbons and carboxylic acids. [Pg.81]

In many applications nowadays it is essential to link a mass spectrometer to the gas chromatography in order to achieve positive identification and sensitivity of analysis. Some 12 types of compounds are listed in Table 1.11(a) which are based on the application of this technique, viz. polyaromatic hydrocarbons, polychlorobenphenyls, dioxins, chloro, carbamate and triazine types of herbicides and pesticides, Diazinon, Dicamba, Imidazoline and Cyperquat herbicides and herbicide pesticide mixtures. [Pg.95]

For more volatile compounds in soils, such as aromatic hydrocarbons, alcohols, aldehydes, ketones, chloroaliphatic hydrocarbons, haloaromatic hydrocarbons, acetonitrile, acrylonitrile and mixtures of organic compounds a combination of gas chromatography with purge and trap analysis is extremely useful. Pyrolysis gas chromatography has also found several applications, heteroaromatic hydrocarbons, polyaromatic hydrocarbons, polymers and haloaromatic compounds and this technique has been coupled with mass spectrometry, (aliphatic and aromatic hydrocarbons and mixtures of organic compounds). [Pg.95]

Another growing technique is super-critical fluid chromatography. Recent references to soil analysis include the following applications aliphatic hydrocarbons, polyaromatic hydrocarbons, polychlorobiphenyls, dioxins, alkyl and aryl phosphates, chloro, organophosphorus, triazine, substituted urea, phenoxy acetic acid, Dacthal herbicides and insecticides and mixtures of herbicides and pesticides and mixtures of organic compounds. [Pg.96]

Electrophoretic and isotachoelectrophoretic techniques are gaining in popularity in soil analysis with applications to polyaromatic hydrocarbons, polychlorobiphenyls, tetrahydrothiophene and triazine herbicides, Paraquat and Diquat and growth regulators. Other lesser-used techniques include spectrophotometric methods (five determinants), spectrofluorimetric methods (two determinants), luminescence methods (one determinant), titration methods (one determinant), thin-layer chromatography (five applications), NHR spectroscopy (two applications) and enzymic immunoassays (one determinant). [Pg.96]

The microwave assisted extraction for organic compounds including polyaromatic hydrocarbons, phenols and organochlorine insecticides, described in section 11.1.8 [25] has been applied to sediments. The application of supercritical fluid extraction to the determination of various insecticides in soils described in section 11.1.7 [23] has been applied to river sediments. [Pg.306]

The Basic Extractive Sludge Treatment (B.E.S.T. ) process is an ex situ solvent extraction technology. The B.E.S.T. process uses one or more secondary or tertiary amines, such as diisopropylamine, to separate contaminants from soil, sediment, and sludge. This technology is applicable to most organics or oily contaminants, including polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pesticides, herbicides, dioxins, furans, and other organic compounds. [Pg.917]

The most efficient ECL from this mechanism occurred when A and D are the same compound. In non-aqueous media polyaromatic hydrocarbons such as rubrene and 9,10-diphenylanthracenjj have yielded ECL by this mechanism (3). In aqueous media, Ru(bpy)3 + (bpy = 2,2 bipyridine) has been used (.2). Analytical application of anodic single potential step ECL has been suggested for determination of oxalate concentration in urine samples 04). [Pg.58]

Polyaromatic hydrocarbons Glass columns Application of high efficiency glass columns [44]... [Pg.112]

Other applications of gas chromatography to the determination of polyaromatic hydrocarbons in non saline waters are reviewed in Table 15.9. [Pg.258]

Other applications of gas chromatography-mass spectrometry include (Table 16.1) the following polyaromatic hydrocarbons, esters, phenols, aromatic acids, chlorophenols, glycols, hydroxybenzenes, 1 4 dioxane, propiolactone, vinyl chloride,... [Pg.401]

The first and main case study for this application is of the electronic absorption spectra (EAS) of ten polyaromatic hydrocarbons (PAHs). Table 1 is of the concentrations of these PAHs in 25 spectra (dataset A) recorded at 1 nm intervals between 220 and 350 nm, forming a matrix which is often presented as having 25 rows (individual spectra) and 131 columns (individual wavelengths). The spectra are available as Electronic Supplementary Information (ESI Table slf). The aim is to determine the concentration of an individual PAH in the mixture spectra. [Pg.2]

At the same time calculations on the modified MEIS are possible without additional kinetic models and do not require extra experimental data for calculations, which makes it possible to use less initial information and obviously reduces the time and labor spent for computing experiment. Furthermore, there arise principally new possibilities for the analysis of methods to mitigate emissions from pulverized-coal boilers, since at separate modeling of different mechanisms of NO formation the measures taken can result in different consequences for each in terms of efficiency. Consideration of kinetic constraints in MEIS will substantially expand the sphere of their application to study other methods of coal combustion (fluidized bed, fixed bed, etc.) and to model processes of forming other pollutants such as polyaromatic hydrocarbons, CO, soot, etc. [Pg.62]

In [m] circulenes, a family of polyaromatic hydrocarbons so named in 1975 by Wynsberg, in which m refers to the number of aromatic rings arranged in a circle, the total number of n electrons does not indicate aromaticity or anti-aromaticity according to the Hiickel rule. This rule is strictly only applicable to monocyclic systems. It is adequate, however, to consider the inner and the outer n electrons separately whose numbers obey the An + 2 Hiickel criterion for aromaticity, since both these circuits are monocyclic [49]. Coronene, a flat graphite frag-... [Pg.8]

NPC has been used in the analysis hydrophobic compounds such as polyaromatic hydrocarbons [31-33]. An interesting example of an application of NPC involving extremely hydrophobic compounds was recently offered by Liu and... [Pg.252]

The major focus for maximizing performance of activated carbon is to provide an optimum balance between increasing adsorptive capacity for polyaromatic hydrocarbons and dioxins while decreasing oil retention in the filter cake. It has been found that steam-activated carbon derived from peat yields the best combination of properties for this application. [Pg.2714]

Polyaromatic hydrocarbons Not applicable Combustion by-products, metal treatment, wood treatment (creosote) and others... [Pg.74]

Todeschini, R., Gramatica, P., Marengo, E. and Provenzani, R. (1995) Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physico-chemical properties of polyaromatic hydrocarbons (PAH). Chemom. InteU. Lab. Syst., 27, 221—229. [Pg.1183]


See other pages where Applications polyaromatic hydrocarbons is mentioned: [Pg.27]    [Pg.27]    [Pg.148]    [Pg.115]    [Pg.16]    [Pg.214]    [Pg.136]    [Pg.104]    [Pg.115]    [Pg.133]    [Pg.1256]    [Pg.1256]    [Pg.300]    [Pg.239]    [Pg.16]    [Pg.214]    [Pg.356]    [Pg.286]    [Pg.300]    [Pg.218]    [Pg.458]    [Pg.962]    [Pg.1018]    [Pg.840]    [Pg.86]    [Pg.360]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



Polyaromatic hydrocarbons

Polyaromatics

© 2024 chempedia.info