Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Apoptosis cytochrome c

It is now well estahlished that activation of the caspase cascade is an indispensable and sufficient process in the execution phase of apoptosis (Nunez et al, 1998). As for mitochondria-mediated apoptosis, cytochrome c released from the mitochondrial inner membrane is well known to play an important role in the activation of caspase 9, one of the upstream proteases in the cascade (Zou et al, 1997). For activation of caspase 9, cytochrome c or apoptotic protease activating factor 2 (Apaf 2) induces the formation of the complex between Apaf 1 and caspase 9. The resultant activated caspase 9 then activates caspase 3, which in turn leads to the genomic DNA fragmentation and apoptotic cell death. [Pg.23]

Figure 4 Mitochondria-dependent apoptosis Cytochrome-c-dependent caspase-3 activation and the roie of the Bci-2 protein famiiy. Figure 4 Mitochondria-dependent apoptosis Cytochrome-c-dependent caspase-3 activation and the roie of the Bci-2 protein famiiy.
Anthracyclins. Figure 2 Mechanisms of anthracycline-induced apoptosis of tumor cells. ROS, reactive oxygen species topo II, topoisomerase II cyt c, cytochrome c. [Pg.93]

BH3 domain) of the BH3-only proteins binds to other Bcl-2 family members thereby influencing their conformation. This interaction facilitates the release of cytochrome C and other mitochondrial proteins from the intermembrane space of mitochondria. Despite much effort the exact biochemical mechanism which governs this release is not yet fully understood. The release of cytochrome C facilitates the formation of the apoptosome, the second platform for apoptosis initiation besides the DISC. At the apoptosome which is also a multi-protein complex the initiator caspase-9 is activated. At this point the two pathways converge. [Pg.206]

Active caspases 8, 9 and 10 can convert caspase-3, the most abundant effector caspase from its pro-form to its active cleaved form. Cleavage of a number of different substrates by caspase-3 and also by caspase-6 and -7 which are two other executioner caspases besides caspase-3 then results in the typical morphology which is characteristic of apoptosis. Yet, the activation of caspase-3 and also of caspase-9 can be counteracted by IAPs, so called inhibitor of apoptosis proteins. However, concomitantly with cytochrome C also other proteins are released from mitochondria, including Smac/DIABLO. Smac/DIABLO and potentially other factors can interact with IAPs and thereby neutralize their caspase-inhibitory activity. This releases the breaks on the cell death program and allows apoptosis to ensue. [Pg.207]

Mitochondrial permeability transition involves the opening of a larger channel in the inner mitochondrial membrane leading to free radical generation, release of calcium into the cytosol and caspase activation. These alterations in mitochondrial permeability lead eventually to disruption of the respiratory chain and dqDletion of ATP. This in turn leads to release of soluble intramito-chondrial membrane proteins such as cytochrome C and apoptosis-inducing factor, which results in apoptosis. [Pg.776]

Neurodegeneration. Figure 3 Illustration of synaptic (neuritic) apoptosis. A pyramidal neuron is depicted with cortical afferents synapsing on its dendrites. Localized apoptotic mechanisms lead to the release of cytochrome c from the mitochondria and an increase in the concentration of activated caspase-3 in a presynaptic terminal that is synapsing on a dendritic spine. Increased caspase-3 activity results in a localized breakdown of this nerve terminal and its synapse. Subsequently, the postsynaptic dendritic spine retracts and disappears (Figure modified from Glantz et al. [5] [3]). [Pg.825]

Mailer What is clear is that we can take an egg extract, add cytochrome C and induce apoptosis quickly. If the inhibitor is there it is not very dominant. [Pg.78]

It has been shown in many studies that protective effects of carotenoids can be observed only at small carotenoid concentrations, whereas at high concentrations carotenoids exert pro-oxidant effects via propagation of free radical damage (Chucair et al., 2007 Lowe et al., 1999 Palozza, 1998, 2001 Young and Lowe, 2001). For example, supplementation of rat retinal photoreceptors with small concentrations of lutein and zeaxanthin reduces apoptosis in photoreceptors, preserves mitochondrial potential, and prevents cytochrome c release from mitochondria subjected to oxidative stress induced by paraquat or hydrogen peroxide (Chucair et al., 2007). However, this protective effect has been observed only at low concentrations of xanthophylls, of 0.14 and 0.17 pM for lutein and zeaxanthin, respectively. Higher concentrations of carotenoids have led to deleterious effects (Chucair et al., 2007). [Pg.328]

The involvement of mitochondria in the pro-apoptotic effects of carotenoids has been clearly demonstrated by the fact that P-carotene induces the release of cytochrome c from mitochondria and alters the mitochondrial membrane potential (Aym) in different tumor cells (Palozza et al., 2003a). Moreover, the highly polar xanthophyll neoxanthin has been reported to induce apoptosis in colon cancer cells by a mechanism that involves its accumulation into the mitochondria and a consequent loss of mitochondrial transmembrane potential and releas of cytochrome c and apoptosis-inducing factor (Terasaki et al., 2007). [Pg.475]

Necrosis by LDH Mitochondrial transmembrane potential by DiOC6 and JC-1 fluorescence Apoptosis by cytochrome c release Annexin V binding DNA fragmentation by agarose gel electrophoresis... [Pg.546]

Li, S., Takasu, T., Perlman, D. M., Peterson, M. S., Burrichter, D., Avdulov, S., Bitterman, P. B., and Polunovsky, V. A. (2003). Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J. Biol. Chem. 278, 3015-3022. [Pg.329]

The functions of mtNOS in mitochondria have been studied (see Chapter 23). Ghafourifar et al. [177] found that the calcium-induced stimulation of mtNOS caused the release of cytochrome c from mitochondria and induced apoptosis. On the other hand, the same group of authors [178] showed that the production of NO by mtNOS and superoxide in mitochondria resulted in the formation of peroxynitrite and stimulated calcium release, indicating the existence of a feedback loop which prevents calcium overload in mitochondria. [Pg.733]

Colquhoun and Schumacher [98] have shown that y-linolcnic acid and eicosapentaenoic acid, which inhibit Walker tumor growth in vivo, decreased proliferation and apoptotic index in these cells. Development of apoptosis was characterized by the enhancement of the formation of reactive oxygen species and products of lipid peroxidation and was accompanied by a decrease in the activities of mitochondrial complexes I, III, and IV, and the release of cytochrome c and caspase 3-like activation of DNA fragmentation. Earlier, a similar apoptotic mechanism of antitumor activity has been shown for the flavonoid quercetin [99], Kamp et al. [100] suggested that the asbestos-induced apoptosis in alveolar epithelial cells was mediated by iron-derived oxygen species, although authors did not hypothesize about the nature of these species (hydroxyl radicals, hydrogen peroxide, or iron complexes ). [Pg.756]

As described earlier, superoxide is a well-proven participant in apoptosis, and its role is tightly connected with the release of cytochrome c. It has been proposed that a switch from the normal four-electron reduction of dioxygen through mitochondrial respiratory chain to the one-electron reduction of dioxygen to superoxide can be an initial event in apoptosis development. This proposal was supported by experimental data. Thus, Petrosillo et al. [104] have shown that mitochondrial-produced oxygen radicals induced the dissociation of cytochrome c from bovine heart submitochondrial particles supposedly via cardiolipin peroxidation. Similarly, it has been found [105] that superoxide elicited rapid cytochrome c release in permeabilized HepG2 cells. In contrast, it was also suggested [106] that it is the release of cytochrome c that inhibits mitochondrial respiration and stimulates superoxide production. [Pg.757]


See other pages where Apoptosis cytochrome c is mentioned: [Pg.348]    [Pg.82]    [Pg.82]    [Pg.12]    [Pg.535]    [Pg.977]    [Pg.956]    [Pg.5]    [Pg.1031]    [Pg.181]    [Pg.296]    [Pg.181]    [Pg.348]    [Pg.82]    [Pg.82]    [Pg.12]    [Pg.535]    [Pg.977]    [Pg.956]    [Pg.5]    [Pg.1031]    [Pg.181]    [Pg.296]    [Pg.181]    [Pg.92]    [Pg.207]    [Pg.824]    [Pg.824]    [Pg.824]    [Pg.32]    [Pg.282]    [Pg.68]    [Pg.204]    [Pg.207]    [Pg.213]    [Pg.215]    [Pg.445]    [Pg.474]    [Pg.475]    [Pg.286]    [Pg.349]    [Pg.992]    [Pg.755]    [Pg.756]    [Pg.756]    [Pg.756]    [Pg.757]   


SEARCH



Cytochrome c, and apoptosis

Cytochrome c, release in apoptosis

© 2024 chempedia.info