Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antioxidants, chromatography

Antioxidants (qv) have a positive effect on oils when present in the proper concentration. Sterols and tocopherols, which are natural antioxidants, may be analy2ed by gas-Hquid chromatography (glc), high performance Hquid chromatography (hplc), or thin-layer chromatography (tic). Synthetic antioxidants maybe added by processors to improve the performance or shelf life of products. These compounds include butylatedhydroxyanisole (BHA), butylated hydroxytoluene (BHT), / fZ-butyUiydroquinone (TBHQ), and propyl gallate. These materials may likewise be analy2ed by glc, hplc, or tic. Citric acid (qv), which functions as a metal chelator, may also be deterrnined by glc. [Pg.134]

R. G. Lichtenthaler and F. Ranfelt, Determination of antioxidants and their transformation products in polyethylene by high-performance liquid chromatography , J. Chromatogr. 149 553-560 (1978). [Pg.331]

Purification of poloxamers has been extensively investigated due to their use in medical applications, the intention often being to remove potentially toxic components. Supercritical fluid fractionation and liquid fractionation have been used successfully to remove low-molecular weight impurities and antioxidants from poloxamers. Gel filtration, high-performance liquid chromatography (HPLC), and ultrafiltration through membranes are among the other techniques examined [5]. [Pg.768]

Nielsen, I.L.F. et al., Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography investigation of their pH stability and antioxidative potency, J. Agric. Food Chem., 51, 5861, 2003. [Pg.83]

Degenhardt, A., Knapp, H., and Winterhalter, P, Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity, J. Agric. Food Chem., 48, 338, 2000. [Pg.269]

Chirinos, R. et al., High-performance liquid chromatography with photodiode array detection (HPLC-DAD)/HPLC-mass spectrometry (MS) profiling of anthocyanins from Andean mashua tubers (Tropaeolum tuberosum Ruiz and Pavon) and their contribution to the overall antioxidant activity, J. Agric. Food Chem., 54, 7089, 2006. [Pg.501]

Analysts in industry prefer in many cases to maintain consistent methods for their analyses. Recommended ASTM analytical procedures are quite well developed in the rubber and polymer industry. As an example, we mention the standard test method for determination of phenolic antioxidants and erucamide slip additives in LDPE using liquid chromatography [76]. However, the current industry standard test methods (ASTM, AOAC, IUPAC, etc.) use a large number of solvents in vast... [Pg.17]

ASTM D 1996-97, Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Low Density Polyethylene Using Liquid Chromatography (LC), Annual Book of ASTM Standards, ASTM, West Conshohocken, PA (1997), Vol. 08.01. [Pg.27]

It is of interest to examine the development of the analytical toolbox for rubber deformulation over the last two decades and the role of emerging technologies (Table 2.9). Bayer technology (1981) for the qualitative and quantitative analysis of rubbers and elastomers consisted of a multitechnique approach comprising extraction (Soxhlet, DIN 53 553), wet chemistry (colour reactions, photometry), electrochemistry (polarography, conductometry), various forms of chromatography (PC, GC, off-line PyGC, TLC), spectroscopy (UV, IR, off-line PylR), and microscopy (OM, SEM, TEM, fluorescence) [10]. Reported applications concerned the identification of plasticisers, fatty acids, stabilisers, antioxidants, vulcanisation accelerators, free/total/bound sulfur, minerals and CB. Monsanto (1983) used direct-probe MS for in situ quantitative analysis of additives and rubber and made use of 31P NMR [69]. [Pg.36]

Applications Open-column chromatography was used for polymer/additive analysis mainly in the 1950-1970 period (cf. Vimalasiri et al. [160]). Examples are the application of CC to styrene-butadiene copoly-mer/(additives, low-MW compounds) [530] and rubbers accelerators, antioxidants) [531]. Column chromatography of nine plasticisers in PVC with various elution solvents has been reported [44], as well as the separation of CHCI3 solvent extracts of PE/(BHT, Santonox R) on an alumina column [532]. Similarly, Santonox R and Ionol CP were easily separated using benzene and Topanol CA and dilaurylthiodipropionate using cyclohexane ethyl acetate (9 1 v/v) [533]. CC on neutral alumina has been used for the separation of antioxidants, accelerators and plasticisers in rubber extracts [534]. Column chromatography of polymer additives has been reviewed [160,375,376]. [Pg.232]

For many decades, the standard technique for measuring carotenoids has been high-pressure liquid chromatography (HPLC). This time consuming and expensive chemical method works well for the measurement of carotenoids in serum, but it is difficult to perform in human tissue since it requires biopsies of relatively large tissue volumes. Additionally, serum antioxidant measurements are more indicative of short-term dietary intakes of antioxidants rather than steady-state accumulations in body tissues exposed to external oxidative stress factors such as smoking and UV-light exposure. [Pg.89]

Figure 12 Separation of Irganox 1076 and Irganox PS802 by size exclusion chromatography (duplicate solution injections of each antioxidant showing the reproducibility of the technique). Figure 12 Separation of Irganox 1076 and Irganox PS802 by size exclusion chromatography (duplicate solution injections of each antioxidant showing the reproducibility of the technique).
AmMa J, Yang H, Basile MJ and Kennelly EJ. 2004. Analysis of polyphenolic antioxidants from the fruits of three Pouteria species by selected ion monitoring liquid chromatography/mass spectrometry. J Agric... [Pg.44]

Aaby K, Hvattum E and Skrede G. 2004. Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection relationship to antioxidant... [Pg.80]

Tourino S, Fuguet E, Jauregui O, Saura-Calixto F, Cascante M and Torres JL. 2008. High-resolution liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber. Rapid Commun Mass Spectrom 22 3489-3500. [Pg.234]

Revilla E and Ryan JM. 2000. Analysis of several phenolic compounds with potential antioxidant properties in grape extracts and wines by high-performance liquid chromatography—photodiode array detection without sample preparation. J Chromatogr 881(1-2) 461 169. [Pg.268]

Modified procedure (ACP kit) Total plasma protein is isolated from low-molecular-weight plasma antioxidants in a single-step liquid gel chromatography procedure and its antiradical capacity ACP is measured in the ACW assay. [Pg.515]


See other pages where Antioxidants, chromatography is mentioned: [Pg.312]    [Pg.304]    [Pg.424]    [Pg.272]    [Pg.311]    [Pg.525]    [Pg.74]    [Pg.865]    [Pg.152]    [Pg.220]    [Pg.248]    [Pg.555]    [Pg.334]    [Pg.998]    [Pg.33]    [Pg.272]    [Pg.289]    [Pg.296]    [Pg.318]    [Pg.328]    [Pg.116]    [Pg.117]    [Pg.125]    [Pg.135]    [Pg.139]   
See also in sourсe #XX -- [ Pg.546 ]




SEARCH



Antioxidants paper chromatography

Antioxidants size-exclusion chromatography

High pressure liquid chromatography antioxidants

Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Linear Low-Density Polyethylene Using Liquid Chromatography

Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Low-Density Polyethylene Using Liquid Chromatography

Standard Test Method for Determination of Phenolic Antioxidants and Erucamide Slip Additives in Polypropylene Homopolymer Formulations Using Liquid Chromatography

Supercritical fluid chromatography antioxidants

Thin layer chromatography antioxidants

Thin layer chromatography phenolic antioxidants

Thin-layer chromatography Amine antioxidants

© 2024 chempedia.info