Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anions, catalytic activity

Not only cationic, but also anionic, species can be retained without addition of specially designed ligands. The anionic active [FFPt(SnCl3)4] complex has been isolated from the [NEt4][SnCl3] solvent after hydrogenation of ethylene [27]. The PtCl2 precursor used in this reaction is stabilized by the ionic salt (liquid at the reaction temperature) since no metal deposition occurs at 160 °C and 100 bar. The catalytic solution can be used repeatedly without apparent loss of catalytic activity. [Pg.267]

Ammonium salts of the zeolites differ from most of the compounds containing this cation discussed above, in that the anion is a stable network of A104 and Si04 tetrahedra with acid groups situated within the regular channels and pore structure. The removal of ammonia (and water) from such structures has been of interest owing to the catalytic activity of the decomposition product. It is believed [1006] that the first step in deammination is proton transfer (as in the decomposition of many other ammonium salts) from NH4 to the (Al, Si)04 network with —OH production. This reaction is 90% complete by 673 K [1007] and water is lost by condensation of the —OH groups (773—1173 K). The rate of ammonia evolution and the nature of the residual product depend to some extent on reactant disposition [1006,1008]. [Pg.208]

There is a wide variety of solid electrolytes and, depending on their composition, these anionic, cationic or mixed conducting materials exhibit substantial ionic conductivity at temperatures between 25 and 1000°C. Within this very broad temperature range, which covers practically all heterogeneous catalytic reactions, solid electrolytes can be used to induce the NEMCA effect and thus activate heterogeneous catalytic reactions. As will become apparent throughout this book they behave, under the influence of the applied potential, as active catalyst supports by becoming reversible in situ promoter donors or poison acceptors for the catalytically active metal surface. [Pg.3]

Typical initiators for living anionic polymerization of siloxanes include conventional organoalkali compounds and lithium siloxanolates22). Initiators containing lithium counterions are preferable to sodium or potassium counterions due to the lower catalytic activity of lithium in siloxane redistribution reactions. Living anionic polymeriza-... [Pg.28]

LP-DE has a weaker catalytic activity than BF3-Et20, AICI3 and TiCU because the Lewis acidity of the lithium cation is moderated by complex-ing with diethyl ether and perchlorate anion [37], but it becomes a highly oxophilic Lewis acid when concentrated solutions are used [38]. The concentration of LP-DE is therefore sometimes essential for the success of the reaction. [Pg.268]

Oxalamidinate anions represent the most simple type of bis(amidinate) ligands in which two amidinate units are directly connected via a central C-C bond. Oxalamidinate complexes of d-transition metals have recently received increasing attention for their efficient catalytic activity in olefin polymerization reactions. Almost all the oxalamidinate ligands have been synthesized by deprotonation of the corresponding oxalic amidines [pathway (a) in Scheme 190]. More recently, it was found that carbodiimides, RN = C=NR, can be reductively coupled with metallic lithium into the oxalamidinate dianions [(RN)2C-C(NR)2] [route (c)J which are clearly useful for the preparation of dinuclear oxalamidinate complexes. The lithium complex obtained this way from N,N -di(p-tolyl)carbodiimide was crystallized from pyridine/pentane and... [Pg.307]

The types of ionic liquids shown in Figure 5.4 have been most extensively studied, especially ones based on chloroaluminate. Whilst these chloroaluminate materials also display useful Lewis acid properties they are highly air and moisture sensitive, which renders them relatively commercially unattractive. Newer ionic liquids containing C104 and NOa anions, for example, which are less air and moisture sensitive, are now being more widely studied, but these are less catalytically active. Other than lack of vapour pressure and catalytic properties there are several other features common to most ionic liquids that make them attractive reaction solvents. These include ... [Pg.156]

In the synthesis of DMC fiom the transesterification of EC and methanol, quaternary ammonium salt catalysts showed good catalytic activity. The main byproduct was ethylene glycol. The quaternary salt with the cation of bulkier alkyl chain laigth and witii more nucleophilic anion showed better reactivity. Hi temperature and large amount of catalyst increased the conversion of EC. The EC conversion and DMC selectivity increased as the pressure of CO2 increased from 250 to 350 psig. [Pg.332]

With Roustan et al. using the sodium salt of the Hieber anion 76-Na, the procedure was improved by Xu and Zhou in 1987 when they introduced the corresponding shelf-stable tetrabutylammonium salt 76-[Bu4N] which is available from Fe(CO)5 78, NaN02 and Bu4NBr (Scheme 17) [61,62]. As well as discovered by Roustan they obtained the substitution products with an ipso-preference (Scheme 16) albeit in a significantly lower yield. In order to maintain the catalytic activity of the product, the reactions were performed under CO-gas atmosphere. [Pg.196]

Wherever possible, we have sought a direct comparison of the reactivities of structurally related Crni and q-II alkyls with ethylene. For example, after having established the catalytic activity of complexes of the type [( Cri (L)2R] (see above), we showed that the isostructural neutral compounds Cp Crn(L)2R did not polymerize ethylene instead facile P-hydrogen elimination was observed. [3) This difference in reactivity was not due to the charge of the complexes. Thus, we have subsequently shown that neutral Cr J alkyls are also active polymerization catalysts. For example, Cp Cr I(THF)Bz2 and even anionic Li[Cp Cr H(Bz)3] (Bz = benzyl) polymerized ethylene at ambient temperature and pressure, while the structurally related CpCrD(bipy)Bz proved inert.[5]... [Pg.154]

Catalytically active species derived from 4. Spectrophotometric titration of the backbone ligand of the sngar discriminating dinuclear copper(ll) complex N, N-bis[(2-pyridylmethyl)-l,3-diaminopropan-2-olato] (//-acetato) dicoppeftll) perchlorate (Cu2(bpdpo), 4) in the presence of two equivalents of copper(ll) ions with sodium hydroxide indicates successive replacement of the bridging acetate anion bound in the sohd state with two hydroxyl ions and two water molecnles in alkaline aqneons solntion (eqs. 2 and 3) (20-22). Two species, [Cu2(L h)(OH)] (4a) and [Cn2(L h)(OH)2] (4b), are thus observed in a pH-dependent equihbrium (20). [Pg.457]

These examples serve to illustrate several general points about use of chiral catalysts for D-A reactions. A cationic metal center is present in nearly all of the catalysts developed to date and has several functions. It is the anchor for the chiral ligands and also serves as a Lewis acid with respect to the dienophile. The chiral ligands establish the facial selectivity of the complexed dienophile. There are several indications of the importance of the anions to catalytic activity. Anions, in general,... [Pg.513]

The original catalyst was Rh2(02CCH3)4, but other carboxylates such as nonafluo-robutanoate and amide anions, such as those from acetamide and caprolactam, also have good catalytic activity.199... [Pg.924]


See other pages where Anions, catalytic activity is mentioned: [Pg.2752]    [Pg.178]    [Pg.500]    [Pg.450]    [Pg.240]    [Pg.167]    [Pg.33]    [Pg.353]    [Pg.562]    [Pg.152]    [Pg.91]    [Pg.362]    [Pg.156]    [Pg.574]    [Pg.218]    [Pg.226]    [Pg.164]    [Pg.56]    [Pg.402]    [Pg.370]    [Pg.265]    [Pg.331]    [Pg.150]    [Pg.11]    [Pg.118]    [Pg.532]    [Pg.574]    [Pg.190]    [Pg.356]    [Pg.106]    [Pg.203]    [Pg.205]    [Pg.535]    [Pg.536]    [Pg.484]    [Pg.514]   
See also in sourсe #XX -- [ Pg.24 , Pg.24 ]




SEARCH



Anion activation

Anionic activated

Sugar anions, catalytic activity

© 2024 chempedia.info