Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium counterion

TPAs+), and crystal violet (CV+) with tetraphenylborate as the counterion. Lithium chloride is the aqueous phase supporting electrolyte. [Pg.74]

Monomeric lithium enolates were rarely characterized by crystal structure analysis. It seems that prerequisite to monomer formation is an optimal solvation of the counterion lithium only if the metal is satisfied by a threefold, strong coordination by an external cosolvent, a monomeric enolate was detectable in the crystal state. This is illustrated by a crystal structure of the lithium enolate of dibenzyl ketone grown from a THF/diethyl ether solution containing the tri-dentate amine ligand A/ M M M" M"-pentamethyldiethylenetriamine (PMDTA), shown in Figure 3.4 [16a]. [Pg.88]

The large sulfur atom is a preferred reaction site in synthetic intermediates to introduce chirality into a carbon compound. Thermal equilibrations of chiral sulfoxides are slow, and parbanions with lithium or sodium as counterions on a chiral carbon atom adjacent to a sulfoxide group maintain their chirality. The benzylic proton of chiral sulfoxides is removed stereoselectively by strong bases. The largest groups prefer the anti conformation, e.g. phenyl and oxygen in the first example, phenyl and rert-butyl in the second. Deprotonation occurs at the methylene group on the least hindered site adjacent to the unshared electron pair of the sulfur atom (R.R. Fraser, 1972 F. Montanari, 1975). [Pg.8]

The ketone is added to a large excess of a strong base at low temperature, usually LDA in THF at -78 °C. The more acidic and less sterically hindered proton is removed in a kineti-cally controlled reaction. The equilibrium with a thermodynamically more stable enolate (generally the one which is more stabilized by substituents) is only reached very slowly (H.O. House, 1977), and the kinetic enolates may be trapped and isolated as silyl enol ethers (J.K. Rasmussen, 1977 H.O. House, 1969). If, on the other hand, a weak acid is added to the solution, e.g. an excess of the non-ionized ketone or a non-nucleophilic alcohol such as cert-butanol, then the tautomeric enolate is preferentially formed (stabilized mostly by hyperconjugation effects). The rate of approach to equilibrium is particularly slow with lithium as the counterion and much faster with potassium or sodium. [Pg.11]

Unsaturation Value. The reaction temperature, catalyst concentration, and type of counterion of the alkoxide affect the degree of unsaturation. The tendency for rearrangement of PO to aHyl alcohol is greatest with lithium hydroxide and decreases in the following order (100) Li+ >... [Pg.351]

Compare atomic charges for sodium borohydride and lithium aluminum hydride. Which ion contains the most electron-rich hydride The least electron-rich hydride Based on these results alone, which hydride reagent should be the better reducing agent Explain. Obtain atomic charges for free borohydride and aluminum hydride anions. What changes, if any, does the counterion produce ... [Pg.140]

Crystalline, diastereomerieally pure syn-aIdols are also available from chiral A-acylsultams. lhe outcome of the induction can be controlled by appropriate choice of the counterion in the cnolate boron enolates lead, almost exclusively, to one adduct 27 (d.r. >97 3, major adduct/ sum of all other diastereomers) whereas mediation of the addition by lithium or tin leads to the predominant formation of adducts 28. Unfortunately, the latter reaction is plagued by lower induced stereoselectivity (d.r. 66 34 to 88 12, defined as above). In both cases, however, diastereomerieally pure adducts are available by recrystallizing the crude adducts. Esters can be liberated by treatment of the adducts with lithium hydroxide/hydrogen peroxide, whereby the chiral auxiliary reagent can be recovered106. [Pg.502]

Transmetalation of lithium enolate 1 a (M = Li ) by treatment with tin(II) chloride at — 42 °C generates the tin enolate that reacts with prostereogenic aldehydes at — 78 °C to preferentially produce the opposite aldol diastereomer 3. Diastereoselectivities of this process may be as high as 97 3. This reaction appears to require less exacting conditions since similar results are obtained if one or two equivalents of tin(ll) chloride arc used. The somewhat less reactive tin enolate requires a temperature of —42 C for the reaction to proceed at an acceptable rate. The steric requirements of the tin chloride counterion are probably less than those of the diethyla-luminum ion (vide supra), which has led to the suggestion26 44 that the chair-like transition state I is preferentially adopted26 44. This is consistent with the observed diastereoselective production of aldol product 3, which is of opposite configuration at the / -carbon to the major product obtained from aluminum enolates. [Pg.536]

Mechanisms of micellar reactions have been studied by a kinetic study of the state of the proton at the surface of dodecyl sulfate micelles [191]. Surface diffusion constants of Ni(II) on a sodium dodecyl sulfate micelle were studied by electron spin resonance (ESR). The lateral diffusion constant of Ni(II) was found to be three orders of magnitude less than that in ordinary aqueous solutions [192]. Migration and self-diffusion coefficients of divalent counterions in micellar solutions containing monovalent counterions were studied for solutions of Be2+ in lithium dodecyl sulfate and for solutions of Ca2+ in sodium dodecyl sulfate [193]. The structural disposition of the porphyrin complex and the conformation of the surfactant molecules inside the micellar cavity was studied by NMR on aqueous sodium dodecyl sulfate micelles [194]. [Pg.275]

Typical initiators for living anionic polymerization of siloxanes include conventional organoalkali compounds and lithium siloxanolates22). Initiators containing lithium counterions are preferable to sodium or potassium counterions due to the lower catalytic activity of lithium in siloxane redistribution reactions. Living anionic polymeriza-... [Pg.28]

Lithium trifluoromethanesulfonimide in acetone or diethyl ether as a safe alternative to lithium perchlorate in diethyl ether for effecting Diels-Alder reactions. Unexpected influence of the counterion on exo/endo selectivity [47]... [Pg.296]

For example, Barlow and Margoliash [33] showed that phosphate, chloride, iodide, and sulfate, in decreasing order of effect, reduced the electrophoretic mobihty of human cytochrome c at pH 6.0 by up to a factor of 2. The cations lithium, sodium, potassium, and calcium had no effect. It is possible to account for the binding equilibria of these counterions so that the titration and electrophoresis results can be compared however, in many of the early electrophoresis experiments these data were not available and relevant conditions were not recorded or controlled. For general discussions on the extensive field of ligand binding to proteins, see Cantor and Schimmel [60] and van Holde [403]. [Pg.588]

Usually, (Z)-boron enolates can be prepared by treating /V-acyl oxazolidones with di-K-butylboron triflate and triethylamine in CH2CI2 at 78°C, and the enolate then prepared can easily undergo aldol reaction at this temperature to give a, vy -aldol product with more than 99% diastereoselectivity (Scheme 3-4). In this example, the boron counterion plays an important role in the stereoselective aldol reaction. Triethylamine is more effective than di-wo-propylethyl amine in the enolization step. Changing boron to lithium leads to a drop in stereoselectivity. [Pg.139]

Allylmetallic reagents The ally] anions obtained by reductive metallation of ally I phenyl sulfides with lithium l-(dimethy amino)naphthalenide (LDMAN, 10, 244) react with a, 3-enals to give mixtures of 1,2-adducts. The regioselectivity can be controlled by the metal counterion. Thus the allyllithium or the allyltitanium compound obtained from either 1 or 2 reacts with crotonaldehyde at the secondary terminus of the allylic system to give mainly the adduct 3. In contrast the allylcerium compound reacts at the primary terminus to form 4 as the major adduct. [Pg.75]


See other pages where Lithium counterion is mentioned: [Pg.56]    [Pg.692]    [Pg.14]    [Pg.200]    [Pg.29]    [Pg.692]    [Pg.273]    [Pg.56]    [Pg.692]    [Pg.14]    [Pg.200]    [Pg.29]    [Pg.692]    [Pg.273]    [Pg.5]    [Pg.60]    [Pg.467]    [Pg.36]    [Pg.467]    [Pg.282]    [Pg.338]    [Pg.23]    [Pg.33]    [Pg.245]    [Pg.455]    [Pg.455]    [Pg.958]    [Pg.779]    [Pg.939]    [Pg.1052]    [Pg.29]    [Pg.779]    [Pg.939]    [Pg.1052]    [Pg.285]    [Pg.286]    [Pg.6]    [Pg.65]    [Pg.257]    [Pg.677]    [Pg.1088]    [Pg.32]    [Pg.415]    [Pg.697]   
See also in sourсe #XX -- [ Pg.38 , Pg.39 ]




SEARCH



Counterion

Counterions

© 2024 chempedia.info