Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anhydride/hydroxyl

Gaylord and coworkers recently presented evidence to show that the compatibilization of the low- and high-density polyethylene and kaolin or bentonite clays in the presence of MA involves both grafting and anhydride-hydroxyl reactions. The peroxide-catalyzed reactions were studied in a Brabender Plasticorder at 130-165°C. Presumably the in situ grafting and condensation reactions occurred as follows ... [Pg.461]

The above mechanism is highly simplified, since etherification may occur in some systems. However, it can generally be concluded that the anhydride-hydroxyl reaction dominates the epoxy-hydroxyl reaction, allowing very little etherification to occur. If only one active hydrogen (hydroxyl group) were present at the start, it would be expected that the optimum properties for the system would be found at an anhydride/epoxy ratio of 1 1, with no etherification. [Pg.509]

The original development of non-isocyanate acrylics was targeted in the early 1980 s at the vehicle refinishing market. The products were developed to be direct alternatives to the isocyanate cured acrylics and polyesters used in this market, due to the inherent toxicity problems of the isocyanate crosslinker. However, the slower cure and lower resistance characteristics of the non-isocyanate products restricted their development in this field and wholesale replacement of two packs by non-isocyanates has not taken place. Nevertheless the anhydride/hydroxyl and amine/epoxy systems have developed well in the captive VR markets in North America and Western Europe, respectively. [Pg.338]

The fast cure, high gloss, low shrinkage and high durability of coatings based on the anhydride/hydroxyl technology has been successfully developed in the automotive sector. [Pg.338]

Prepared by condensing p-chlorophenol with phlhalic anhydride in sulphuric acid solution in the presence of boric acid. The chlorine atom is replaced by hydroxyl during the condensation. It can also be prepared by oxidation of anthraquinone or 1-hydroxyanthraquinone by means of sulphuric acid in the presence of mercury(ll) sulphate and boric acid. [Pg.338]

The excess of unchanged acetic anhydride is then hydrolysed by the addition of water, and the total free acetic acid estimated by titration with standard NaOH solution. Simultaneously a control experiment is performed identical with the above except that the alcohol is omitted. The difference in the volumes of NaOH solution required in the two experiments is equivalent to the difference in the amount of acetic add formed, i.e., to the acetic acid used in the actual acetylation. If the molecular weight of the alcohol is known, the number of hydroxyl groups can then be calculated. [Pg.450]

This method is precisely similar to the previous method used for the estimation of the number of hydroxyl groups in a polyhydric alcohol. A known weight of aniline is heated with a mixture of acetic anhydride and pyridine until acetylation is complete the excess of acetic anhydride remaining is... [Pg.452]

Acetates may also be prepared by adding acetic anhydride to somewhat dilute solutions of compounds containing hydroxyl (or amino) groups in aqueous caustic alkahs. The amount of alkali used should suffice to leave the hquid shghtly basic at the end of the operation, so much ice should be added that a little remains unmelted, and the acetic anhydride should be added quickly. [Pg.682]

As a catalyst for ester and amide formation from acyl chlorides or anhydrides, 4-(di-methylamino)pyridine has been recommended (DMAP G. Hdfle, 1978). In the presence of this agent highly hindered hydroxyl groups, e.g. of steroids and carbohydrates, are acylated under mild conditions, which is difficult to achieve with other catalysts. [Pg.144]

We shall describe a specific synthetic example for each protective group given above. Regiosdective proteaion is generally only possible if there are hydroxyl groups of different sterical hindrance (prim < sec < tert equatorial < axial). Acetylation has usually been effected with acetic anhydride. The acetylation of less reactive hydroxyl groups is catalyzed by DMAP (see p.l44f.). Acetates are stable toward oxidation with chromium trioxide in pyridine and have been used, for example, for protection of steroids (H.J.E. Loewenthal, 1959), carbohydrates (M.L. Wolfrom, 1963 J.M. Williams, 1967), and nucleosides (A.M. Micbelson, 1963). The most common deacetylation procedures are ammonolysis with NH in CH OH and methanolysis with KjCO, or sodium methoxide. [Pg.158]

Acylatmg agents such as acyl chlorides and carboxylic acid anhydrides can react with phenols either at the aromatic ring (C acylation) or at the hydroxyl oxygen (O acylation)... [Pg.1004]

On reaction with acyl chlorides and acid anhydrides phenols may undergo either acylation of the hydroxyl group (O acylation) or acylation of the ring (C acylation) The product of C acylation is more stable and predominates under conditions of thermodynamic control when alu mmum chloride is present (see entry 6 m Table 24 4 Section 24 8) O acylation is faster than C acylation and aryl esters are formed under conditions of kinetic control... [Pg.1017]

The alcohol groups of carbohydrates undergo chemical reactions typical of hydroxyl functions They are converted to esters by reaction with acyl chlorides and carboxylic acid anhydrides... [Pg.1058]

The cellulose molecule contains three hydroxyl groups which can react and leave the chain backbone intact. These alcohol groups can be esterified with acetic anhydride to form cellulose acetate. This polymer is spun into the fiber acetate rayon. Similarly, the alcohol groups in cellulose react with CS2 in the presence of strong base to produce cellulose xanthates. When extruded into fibers, this material is called viscose rayon, and when extruded into sheets, cellophane. In both the acetate and xanthate formation, some chain degradation also occurs, so the resulting polymer chains are shorter than those in the starting cellulose. [Pg.18]

Acetals are readily formed with alcohols and cycHc acetals with 1,2 and 1,3-diols (19). Furfural reacts with poly(vinyl alcohol) under acid catalysis to effect acetalization of the hydroxyl groups (20,21). Reaction with acetic anhydride under appropriate conditions gives the acylal, furfuryUdene diacetate... [Pg.77]

Acetic anhydride acetylates free hydroxyl groups without a catalyst, but esterification is smoother and more complete ia the presence of acids. For example, ia the presence of -toluenesulfonic acid [104-15-4], the heat of reaction for ethanol and acetic anhydride is —60.17 kJ/mol (—14.38 kcal/mol) (13) ... [Pg.75]

The hydroxyl group can be esterified with acid chlorides, anhydrides, or carboxyUc acids and it reacts with aldehydes (12) or vinyl ethers (13) in the presence of an acid catalyst to form acetals. [Pg.103]

Diester/Ether Diol of Tetrabromophthalic Anhydride. This material [77098-07-8] is prepared from TBPA in a two-step reaction. First TBPA reacts with diethylene glycol to produce an acid ester. The acid ester and propylene oxide then react to give a diester. The final product, a triol having two primary and one secondary hydroxyl group, is used exclusively as a flame retardant for rigid polyurethane foam (53,54). [Pg.470]

The primary and secondary alcohol functionahties have different reactivities, as exemplified by the slower reaction rate for secondary hydroxyls in the formation of esters from acids and alcohols (8). 1,2-Propylene glycol undergoes most of the typical alcohol reactions, such as reaction with a free acid, acyl hahde, or acid anhydride to form an ester reaction with alkaU metal hydroxide to form metal salts and reaction with aldehydes or ketones to form acetals and ketals (9,10). The most important commercial appHcation of propylene glycol is in the manufacture of polyesters by reaction with a dibasic or polybasic acid. [Pg.366]

The synthesis of 2,4-dihydroxyacetophenone [89-84-9] (21) by acylation reactions of resorcinol has been extensively studied. The reaction is performed using acetic anhydride (104), acetyl chloride (105), or acetic acid (106). The esterification of resorcinol by acetic anhydride followed by the isomerization of the diacetate intermediate has also been described in the presence of zinc chloride (107). Alkylation of resorcinol can be carried out using ethers (108), olefins (109), or alcohols (110). The catalysts which are generally used include sulfuric acid, phosphoric and polyphosphoric acids, acidic resins, or aluminum and iron derivatives. 2-Chlororesorcinol [6201-65-1] (22) is obtained by a sulfonation—chloration—desulfonation technique (111). 1,2,4-Trihydroxybenzene [533-73-3] (23) is obtained by hydroxylation of resorcinol using hydrogen peroxide (112) or peracids (113). [Pg.491]

Functional Group Analysis. The total hydroxyl content of lignin is determined by acetylation with an acetic anhydride—pyridine reagent followed by saponification of the acetate, and followed by titration of the resulting acetic acid with a standard 0.05 W sodium hydroxide solution. Either the Kuhn-Roth (35) or the modified Bethge-Liadstrom (36) procedure may be used to determine the total hydroxyl content. The aUphatic hydroxyl content is determined by the difference between the total and phenoHc hydroxyl contents. [Pg.141]

Oxidation. Maleic and fumaric acids are oxidized in aqueous solution by ozone [10028-15-6] (qv) (85). Products of the reaction include glyoxyhc acid [298-12-4], oxalic acid [144-62-7], and formic acid [64-18-6], Catalytic oxidation of aqueous maleic acid occurs with hydrogen peroxide [7722-84-1] in the presence of sodium tungstate(VI) [13472-45-2] (86) and sodium molybdate(VI) [7631-95-0] (87). Both catalyst systems avoid formation of tartaric acid [133-37-9] and produce i j -epoxysuccinic acid [16533-72-5] at pH values above 5. The reaction of maleic anhydride and hydrogen peroxide in an inert solvent (methylene chloride [75-09-2]) gives permaleic acid [4565-24-6], HOOC—CH=CH—CO H (88) which is useful in Baeyer-ViUiger reactions. Both maleate and fumarate [142-42-7] are hydroxylated to tartaric acid using an osmium tetroxide [20816-12-0]/io 2LX.e [15454-31 -6] catalyst system (89). [Pg.452]

On dehydration, nitro alcohols yield nitro-olefins. The ester of the nitro alcohol is treated with caustic or is refluxed with a reagent, eg, phthaUc anhydride or phosphoms pentoxide. A mil der method involves the use of methane sulfonyl chloride to transform the hydroxyl into a better leaving group. Yields up to 80% after a reaction time of 15 min at 0°C have been reported (5). In aqueous solution, nitro alcohols decompose at pH 7.0 with the formation of formaldehyde. One mole of formaldehyde is released per mole of monohydric nitro alcohol, and two moles of formaldehyde are released by the nitrodiols. However, 2-hydroxymethyl-2-nitro-l,3-propanediol gives only two moles of formaldehyde instead of the expected three moles. The rate of release of formaldehyde increases with the pH or the temperature or both. [Pg.61]

Liquid crystal polyesters are made by a different route. Because they are phenoHc esters, they cannot be made by direct ester exchange between a diphenol and a lower dialkyl ester due to unfavorable reactivities. The usual method is the so-called reverse ester exchange or acidolysis reaction (96) where the phenoHc hydroxyl groups are acylated with a lower aHphatic acid anhydride, eg, acetic or propionic anhydride, and the acetate or propionate ester is heated with an aromatic dicarboxyHc acid, sometimes in the presence of a catalyst. The phenoHc polyester forms readily as the volatile lower acid distills from the reaction mixture. Many Hquid crystal polymers are derived formally from hydroxyacids (97,98) and thein acetates readily undergo self-condensation in the melt, stoichiometric balance being automatically obtained. [Pg.295]

Hydroxyl number and molecular weight are normally determined by end-group analysis, by titration with acetic, phthaUc, or pyromellitic anhydride (264). Eor lower molecular weights (higher hydroxyl numbers), E- and C-nmr methods have been developed (265). Molecular weight deterrninations based on coUigative properties, eg, vapor-phase osmometry, or on molecular size, eg, size exclusion chromatography, are less useful because they do not measure the hydroxyl content. [Pg.366]

Vinyl resins ie, copolymers of vinyl chloride and vinyl acetate which contain hydroxyl groups from the partial hydrolysis of vinyl acetate and/or carboxyl groups, eg, from copolymerized maleic anhydride, may be formulated with alkyd resins to improve their appHcation properties and adhesion. The blends are primarily used in making marine top-coat paints. [Pg.42]

Production is by the acetylation of 4-aminophenol. This can be achieved with acetic acid and acetic anhydride at 80°C (191), with acetic acid anhydride in pyridine at 100°C (192), with acetyl chloride and pyridine in toluene at 60°C (193), or by the action of ketene in alcohoHc suspension. 4-Hydroxyacetanihde also may be synthesized directiy from 4-nitrophenol The available reduction—acetylation systems include tin with acetic acid, hydrogenation over Pd—C in acetic anhydride, and hydrogenation over platinum in acetic acid (194,195). Other routes include rearrangement of 4-hydroxyacetophenone hydrazone with sodium nitrite in sulfuric acid and the electrolytic hydroxylation of acetanilide [103-84-4] (196). [Pg.316]


See other pages where Anhydride/hydroxyl is mentioned: [Pg.438]    [Pg.49]    [Pg.8]    [Pg.162]    [Pg.98]    [Pg.699]    [Pg.20]    [Pg.331]    [Pg.336]    [Pg.132]    [Pg.438]    [Pg.49]    [Pg.8]    [Pg.162]    [Pg.98]    [Pg.699]    [Pg.20]    [Pg.331]    [Pg.336]    [Pg.132]    [Pg.83]    [Pg.233]    [Pg.141]    [Pg.451]    [Pg.1014]    [Pg.518]    [Pg.404]    [Pg.134]    [Pg.242]    [Pg.19]    [Pg.34]    [Pg.415]   
See also in sourсe #XX -- [ Pg.331 , Pg.336 , Pg.338 ]




SEARCH



Anhydrides and esters hydroxyl derivatives

Hydroxyl groups anhydrides

Hydroxyl groups glutaric anhydride

Hydroxyl groups modification with anhydrides

Hydroxyl value phthalic anhydride

© 2024 chempedia.info