Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical chemical sensors

Amperometry is a voltammetric method in which a constant potential is applied to the electrode and the resulting current is measured. Amperometry is most often used in the construction of chemical sensors that, as with potentiometric sensors, are used for the quantitative analysis of single analytes. One important example, for instance, is the Clark O2 electrode, which responds to the concentration of dissolved O2 in solutions such as blood and water. [Pg.533]

Definition the electronic tongue is an analytical instrarment including an array of low-selective chemical sensors and appropriate pattern recognition tool, capable to recognize quantitative and qualitative compositions of simple and complex solutions . [Pg.19]

Bulk and surface imprinting strategies are straightforward tools to generate artificial antibodies. Combined with transducers such as QCM (quartz crystal microbalance), SAW (surface acoustic wave resonator), IDC (interdigital capacitor) or SPR (surface plasmon resonator) they yield powerful chemical sensors for a very broad range of analytes. [Pg.298]

One of the new trends in chemical analysis appeared in the last decade is that the miniaturization. It becomes apparent in the miniaturization of analytical devices, separation procedures, measuring tools, analyzing samples and as a consequent the term micro have appeared. Further development of this trend have led to transfer from the term micro to nano one (nanoparticles, nanofluides, nanoprobes, nanoelectrodes, nanotubes, nanoscale, nanobarcode, nanoelectrospray, nanoreactors, etc). Thereupon a nanoscale films produced by Langmuir-Blodgett (LB) technique are proposed for modifying of chemical sensors. [Pg.308]

Vlasov YG, Bychkov EA, Legin AV (1994) Chalcogenide glass chemical sensors Research and analytical applications. Talanta 41 1059-1063... [Pg.347]

Semiconductor chemical sensors are characterized by low cost, small size, extra high sensitivity (often unattainable in other analytical techniques) as well as reliability. Moreover, concentration of particles detected is being transformed directly into electrical signal and electronic design of the device is the simplest one which can be arranged for on the active part of the substrate. [Pg.6]

The signal from continuous chemical sensors is continuous in time. It follows changes in the concentration of the analyte up and down. The signal often originates from the interaction of the analyte with a chemically selective layer... [Pg.28]

T. Seyama, K. Fueki, J. Shiokawa and S. Suzuki (Editors), Chemical Sensors, proceedings of the International Meeting, Fukuoka, Japan, 19-22 September 1983 (Analytical Chemistry Symposia Series, Vol.-17), Elsevier, Amsterdam, and Kodamsha, Tokyo, 1983. [Pg.378]

In these sensors, the intrinsic absorption of the analyte is measured directly. No indicator chemistry is involved. Thus, it is more a kind of remote spectroscopy, except that the instrument comes to the sample (rather than the sample to the instrument or cuvette). Numerous geometries have been designed for plain fiber chemical sensors, all kinds of spectroscopies (from IR to mid-IR and visible to the UV from Raman to light scatter, and from fluorescence and phosphorescence intensity to the respective decay times) have been exploited, and more sophisticated methods including evanescent wave spectroscopy and surface plasmon resonance have been applied. [Pg.21]

An integral part of a fibre optic sensor is the light source. Its primary task is to deliver an appropriate light, which possesses such features as an optical power suitable to interact with an analyte or an indicator from the optrode, a wavelength matched to the spectral properties of the sensors in order to obtain the highest sensitivity, and, in dependence on the construction of the sensor, polarisation, short pulse etc. There are many various light sources utilised in the fibre optic chemical sensors. They differ in spectral properties, generated optical power and coherence. [Pg.51]

Successful development of fibre optic chemical sensors requires the cooperation of many specialists in various fields of science. Scientists in analytical chemistry, polymer science, material science, optoelectronics and electronics etc. can be involved in this multidisciplinary task. Depending on the application of the sensor biologists, medical doctors or environmentalists can also be incorporated to the working group. Although, the contribution of all specialists cannot be classified by the importance, analytical chemistry and material science seem to be the key to the success. [Pg.58]

Hulanicki A., Glab S., Ingman F., Chemical sensors definitions and classification. Commission on General Aspects of Analytical Chemistry, Pure Appl. Chem. 1991 63 1247. [Pg.96]

In practice, surface modifications are restricted to sensors of the ATR- or FEWS-type. For other transducer layouts, the sample - radiation interaction is less localised, making a modification difficult to impossible. Depending on the analytes and the environment of the sensor, two basic surface modification strategies can be used to enhance the function of vibrational spectroscopic optical chemical sensors. The functional layers can either be... [Pg.140]

Munkholm C., Walt D.R., Milanovich F.P., Klainer S.M., Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pEl measurement, Analytical Chemistry 1986 58 1427-1430. [Pg.321]

The optode transduces the non-optical signal from the environment to the optical one, readable by the photodetector. Various indirect optical sensors and theirs applications are described in literature35. The optode can work as a chemical sensor that detects certain analytes in aqueous solutions or in air on chemical way. It means that changes in the environment cause the changes in the photosensitive material, which is immobilized in the optode matrix. These chemical changes influence the observed light intensity (for example, due to absorption) or one can analyze the intensity or time decay of luminescence. There are numbers of publications devoted to the family of optical chemical sensors36. [Pg.360]

Over the last several years, the number of studies on application of artificial neural network for solving modeling problems in analytical chemistry and especially in optical fibre chemical sensor technology, has increase substantially69. The constructed sensors (e.g. the optical fibre pH sensor based on bromophenol blue immobilized in silica sol-gel film) are evaluated with respect to prediction of error of the artificial neural network, reproducibility, repeatability, photostability, response time and effect of ionic strength of the buffer solution on the sensor response. [Pg.368]

The combination of pin printing and sol-gel processing techniques provides a simple method to rapidly fabricate reusable chemical sensor element into arrays that exhibit good analytical figures of merit. This methodology also provides a straightforward means to fabricate reusable sensor arrays for simultaneous multianalyte quantification. [Pg.377]

As opposed to conventional analytical techniques, optical sensors and biosensors, particularly those employing absorption and fluorescence-based sensing materials potentially allow for measurement through transparent or semi-transparent materials in a non-destructive fashion4, 5> 9 10. Chemical sensor technology has developed rapidly over the past years and a number of systems for food applications have been introduced and evaluated with foods. [Pg.502]

The participation of cations in redox reactions of metal hexacyanoferrates provides a unique opportunity for the development of chemical sensors for non-electroactive ions. The development of sensors for thallium (Tl+) [15], cesium (Cs+) [34], and potassium (K+) [35, 36] pioneered analytical applications of metal hexacyanoferrates (Table 13.1). Later, a number of cationic analytes were enlarged, including ammonium (NH4+) [37], rubidium (Rb+) [38], and even other mono- and divalent cations [39], In most cases the electrochemical techniques used were potentiometry and amperometry either under constant potential or in cyclic voltammetric regime. More recently, sensors for silver [29] and arsenite [40] on the basis of transition metal hexacyanoferrates were proposed. An apparent list of sensors for non-electroactive ions is presented in Table 13.1. [Pg.439]

The sPS has been exploited as sensitive material for fiber optic chemical sensors based on reflectance measurements and aimed to detection of chloroform and toluene in water and air environments48 50. The refractive index of sPS thin films is estimated to be about 1.578. The effect of the analyte sorption in the crystalline domain was modeled as an increase in the material density, which in turn leads to an increase in the refractive index according to the Lorentz-Lorenz law ... [Pg.51]

In order to make a FPI chemical sensor, the FP cavity needs to be made accessible by the analyte molecules. One way to achieve this is to use a holey sleeve to host the cavity. Xiao et al.7 reported such a fiber FPI gas sensor formed by bonding two endface-polished fibers in a holey sleeve using epoxy. The holey sleeve allows gas to freely enter and leave the cavity. A resolution of 10 5 was estimated in monitoring the changes in the refractive index caused by varying the gas composition. However, the sensor assembly was complicated and required the use of epoxy. In addition, the various components used in sensor construction were made of different materials. As a result, the device had a strong dependence on temperature. [Pg.150]


See other pages where Analytical chemical sensors is mentioned: [Pg.202]    [Pg.208]    [Pg.75]    [Pg.545]    [Pg.55]    [Pg.265]    [Pg.165]    [Pg.1]    [Pg.171]    [Pg.171]    [Pg.517]    [Pg.522]    [Pg.28]    [Pg.45]    [Pg.177]    [Pg.18]    [Pg.56]    [Pg.100]    [Pg.117]    [Pg.253]    [Pg.365]    [Pg.22]    [Pg.72]    [Pg.568]    [Pg.588]    [Pg.3]    [Pg.6]    [Pg.50]    [Pg.57]    [Pg.177]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Analyte Interactions and Acoustic-Wave Chemical Sensors

Analytical applications, chemically modified electrode sensors

Sensors analytical

Sensors, chemical

© 2024 chempedia.info