Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amount of Solvent

As previously mentioned, one of the main degrees of freedom in absorption operations is the amount of solvent which is required to achieve the required absorption. This amount depends on how well the undesired gas component (the solute) is absorbed into the solvent. The vapour liquid equilibrium relationship for absorption of a gas component into a liquid solvent is expressed as  [Pg.166]

As for distillation, the thermodynamic data form the basis for the design for absorption and the absorption equilibrium data can be found either tabulated, from correlations or from commercial software. Again, good data is vital to ensure good design. [Pg.166]

We know that the column will not operate at equilibrium, but to avoid having to use complex calculation methods based on diffusion, we find the solvent flow rate which would have been required to achieve the separation had the column operated at equilibrium, and then assume that the actual flow rate will be a fraction larger than this, typically 1.4—1.5 times larger. [Pg.166]

1 Problem. Consider the same separation as previously, where a hydrocarbon gas stream is to be purified by continuous counter-current contact with a liquid organic solvent in an absorption column. The inlet gas contains 1.5% by volume of toxic DMSO of which 95% is to be removed. The gas flows at a rate of G = 0.1 kmol s 1 on a DMSO-free basis. [Pg.166]

The organic liquid solvent initially contains 0.001 mole fraction DMSO. The required solvent flow rate is to be 1.5 times the minimum. The gas-liquid equilibrium relationship is given by  [Pg.167]


The entropy of a solution is itself a composite quantity comprising (i) a part depending only on tire amount of solvent and solute species, and independent from what tliey are, and (ii) a part characteristic of tire actual species (A, B,. ..) involved (equal to zero for ideal solutions). These two parts have been denoted respectively cratic and unitary by Gurney [55]. At extreme dilution, (ii) becomes more or less negligible, and only tire cratic tenn remains, whose contribution to tire free energy of mixing is... [Pg.2824]

The performance of this experiment was very similar to the preparation of 3,4--hexadienenitrile (see this Chapter, Exp. 20). The same molar amounts of reagents and the same amounts of solvents were used. The work-up was also similar to that... [Pg.170]

Most reactions involve reactants and products that are dispersed in a solvent. If the amount of solvent is changed, either by diluting or concentrating the solution, the concentrations of ah reactants and products either decrease or increase. The effect of these changes in concentration is not as intuitively obvious as when the concentration of a single reactant or product is changed. As an example, let s consider how dilution affects the equilibrium position for the formation of the aqueous silver-amine complex (reaction 6.28). The equilibrium constant for this reaction is... [Pg.149]

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

These factors make it necessary to reduce the amount of solvent vapor entering the flame to as low a level as possible and to make any droplets or particulates entering the flame as small and of as uniform a droplet size as possible. Desolvation chambers are designed to optimize these factors so as to maintain a near-constant efficiency of ionization and to flatten out fluctuations in droplet size from the nebulizer. Droplets of less than 10 pm in diameter are preferred. For flow rates of less than about 10 pl/min issuing from micro- or nanobore liquid chromatography columns, a desolvation chamber is unlikely to be needed. [Pg.107]

Having assisted desolvation in this way, the carrier gas then carries solvent vapor produced in the initial nebulization with more produced in the desolvation chamber. The relatively large amounts of solvent may be too much for the plasma flame, causing instability in its performance and, sometimes, putting out the flame completely. Therefore, the desolvation chamber usually contains a second section placed after the heating section. In this second part of the desolvation chamber, the carrier gas and entrained vapor are strongly cooled to temperatures of about 0 to -10 C. Much of the vapor condenses out onto the walls of the cooled section and is allowed to drain away. Since this drainage consists only of solvent and not analyte solution, it is normally directed to waste. [Pg.152]

In some instances, the plasma flame can go out altogether if the levels of sample or other contaminants rise too high. This problem has led to the development of a wide variety of gasAiquid separators and/or desolvation chambers that condition the sample before it is introduced to the flame. These separators and chambers reduce the amount of solvent flowing into the flame. [Pg.397]

High Performance Liquid Chromatography. Although chiral mobile phase additives have been used in high performance Hquid chromatography (hplc), the large amounts of solvent, thus chiral mobile phase additive, required to pre-equiUbrate the stationary phase renders this approach much less attractive than for dc and is not discussed here. [Pg.63]

Diluent Portion. The diluent portion of a flavor compound is the carrier for the color and the flavor, ie, the solvent for the flavor portion. It keeps the flavor homogenous, ie, keeps soflds in solution retards chemical reactions from occurring and regulates flavor strength, ie, the greater the amount of solvent, the weaker the flavor. [Pg.16]

Fusion Process. In the fusion process, also frequendy referred to as fusion cook, inert gas is continuously sparged from the bottom of the reactor to carry away water vapor from the reaction mixture. The exhaust is then either vented away or sent to a fume scmbber, which is frequendy a small vessel with water atomi2ing no22les. After the reaction is completed, the finished resin may be discharged, filtered, and packaged without solvent. More frequendy, it is cooled to a safe temperature, then dissolved in the desired type and amount of solvent in a thinning tank, filtered, and packaged, or pumped... [Pg.38]

Numerous modifications to the above process are possible and many variations have been suggested. Inert solvents other than methanol can be used however, low molecular weight alcohols are usually considered preferable. Part of the reaction product can be recycled back to the front of the process to reduce the amount of solvent requited and to eliminate problems associated with DNT soHdification. A 76 24 mixture of DNT I DA has been found to exhibit a minimum free2ing point of 26°C, as compared to 50°C for pure DNT (46,47). The temperature at which the reaction is carried out can also be varied. Higher temperatures not only reduce the reaction time needed, but also result in less residue being formed (46). A temperature of 115 to 130°C is considered ideal, whereas temperatures above 170 °C are considered unsafe. [Pg.260]

These regulations are based in part on the amount of solvents in relation to the amount of soHds. Most wood stains are low soHds materials which rely on their transparency and their abiHty to penetrate and dry fast. Those characteristics themselves put great emphasis on the type of solvents that are used to formulate stains. The low soHds content of wood stains limits the scope of solvent substitution or reformulation. [Pg.339]

This unusual behavior results from unsolvated crystalline regions in the PVC that act as physical cross-links. These allow the PVC to accept large amounts of solvent (plasticizers) in the amorphous regions, lowering its T to well below room temperature, thus making it mbbery. PVC was, as a result, the first thermoplastic elastomer (TPE). This mbber-like material has stable properties over a wide temperature range (32,138—140). [Pg.504]

Batch distillation (see Fig. 3) typically is used for small amounts of solvent wastes that are concentrated and consist of very volatile components that are easily separated from the nonvolatile fraction. Batch distillation is amenable to small quantities of spent solvents which allows these wastes to be recovered onsite. With batch distillation, the waste is placed in the unit and volatile components are vaporized by applying heat through a steam jacket or boiler. The vapor stream is collected overhead, cooled, and condensed. As the waste s more volatile, high vapor pressure components are driven off, the boiling point temperature of the remaining material increases. Less volatile components begin to vaporize and once their concentration in the overhead vapors becomes excessive, the batch process is terrninated. Alternatively, the process can be terrninated when the boiling point temperature reaches a certain level. The residual materials that are not vaporized are called still bottoms. [Pg.161]

The physical picture in concentrated electrolytes is more apdy described by the theory of ionic association (18,19). It was pointed out that as the solutions become more concentrated, the opportunity to form ion pairs held by electrostatic attraction increases (18). This tendency increases for ions with smaller ionic radius and in the lower dielectric constant solvents used for lithium batteries. A significant amount of ion-pairing and triple-ion formation exists in the high concentration electrolytes used in batteries. The ions are solvated, causing solvent molecules to be highly oriented and polarized. In concentrated solutions the ions are close together and the attraction between them increases ion-pairing of the electrolyte. Solvation can tie up a considerable amount of solvent and increase the viscosity of concentrated solutions. [Pg.509]

Thermal Properties. The thermal stabiUty of cellulose esters is deterrnined by heating a known amount of ester in a test tube at a specific temperature a specified length of time, after which the sample is dissolved in a given amount of solvent and its intrinsic viscosity and solution color are deterrnined. Solution color is deterrnined spectroscopically and is compared to platinum—cobalt standards. Differential thermal analysis (dta) has also been reported as a method for determining the relative heat stabiUty of cellulose esters (127). [Pg.258]

Chemically bonded phases are usually more resiHent than nonbonded phases, tending not to wash out as large amounts of solvent pass through the column, and having much better thermal stabiHty than do the nonbonded phases. Frequendy a chemically bonded phase can be identified to effect a given separation at the same efficiency as a nonbonded one, thus the bonded phases are generally preferred... [Pg.106]

An important characteristic of solvents is rate of evaporation. Rates of solvent loss are controUed by the vapor pressure of the solvent(s) and temperature, partial pressure of the solvent over the surface, and thus the air-flow rate over the surface, and the ratio of surface area to volume. Tables of relative evaporation rates, in which -butyl acetate is the standard, are widely used in selecting solvents. These relative rates are deterrnined experimentally by comparing the times required to evaporate 90% of a weighed amount of solvent from filter paper under standard conditions as compared to the time for -butyl acetate. The rates are dependent on the standard conditions selected (6). Most tables of relative evaporation rates are said to be at 25°C. This, however, means that the air temperature was 25°C, not that the temperature of the evaporating solvent was 25°C. As solvents evaporate, temperature drops and the drop in temperature is greatest for solvents that evaporate most rapidly. [Pg.342]

Many components of ships and marine stmctures are now coated in the shop under controlled conditions to reduce the amount of solvents released into the atmosphere, improve the quaUty of work, and reduce cost. Regulations designed to limit the release of volatile organic compounds into the air confine methods of shop apphcation to those having transfer efficiencies of 65%. Transfer efficiency is defined as the percent of the mass or volume of sohd coating that is actually deposited on the item being coated, and is calculated as... [Pg.366]

Selection of Solvent When choice is possible, preference is given to liquids with high solubilities for the solute a high solubility reduces the amount of solvent to be circulated. The solvent should be relatively nonvolatile, inexpensive, noncorrosive, stable, nonviscous, nonfoaming, and preferably nonflammable. Since the exit gas normally leaves saturated with solvent, solvent loss can be costly and may present environmental contamination problems. Thus, low-cost solvents may be chosen over more expensive ones of higher solubility or lower volatility. [Pg.1351]

For the special case of absorption from lean gases with relatively large amounts of solvent, the equilibrium hues are defined for each component by the relation... [Pg.1362]

After cooling, the products are extracted from the reaction mixture with successive portions of water and ether. Extraction is facilitated by breaking up the solid material with a glass rod. The total amounts of solvents required are approximately 750 ml. [Pg.50]

NaBH4 has also been crystd from isopropylamine by dissolving it in the solvent at reflux, cooling, filtering and allowing the solution to stand in a filter flask connected to a Dry-ice/acetone trap. After most of the solvent was passed over into the cold trap, crystals were removed with forceps, washed with dry diethyl ether and dried under vacuum. [Kim and Itoh J Phys Chem 91 126 1987.] Somewhat less pure crystals were obtained more rapidly by using Soxhlet extraction with only a small amount of solvent and extracting for about 8h. The... [Pg.466]

When preparing a PBC or reaction field calculation, the total size of the system is important. In general, the larger the system, as judged by the amount of solvent, the better. [Pg.454]

Another aspect of cost reduction would be solvent economy. The need to preferentially select inexpensive solvents and employ the minimum amount of solvent per analysis would be the third performance criteria. Finally, to conserve sample and to have the capability of determining trace contaminants, the fourth criterion would be that the combination of column and detector should provide the maximum possible mass sensitivity and, thus, the minimum amount of sample. The performance criteria are summarized in Table 1. Certain operating limits are inherent in any analytical instrument and these limits will vary with the purpose for which the instrument was designed. For example, the preparative chromatograph will have very different operating characteristics from those of the analytical chromatograph. [Pg.362]

The increase of restrictive regulations on the use of organic solvents favoured the increasing use of latex-based adhesives. Because of the slow evaporation of water, these adhesives show less tack and can suffer bacterial attack. Infrared heaters and ovens can be used to favour the evaporation of water. Often a small amount of solvent (coalescing aid) is added to the latex system to improve wetting and coalescence of the latex particles. [Pg.646]

Onee APy is established, the height and area of the bed ean be ealeulated from earlier expressions, and then one ean seleet a eylindrieal tank or pressure vessel. Should the objective of the absorption proeess be solvent recovery, then the amount of solvent retained in the bed must be ealeulated in order to determine how mueh steam is needed for stripping purposes. The amount (or weight) of solvent is simply equal to S X W. [Pg.297]


See other pages where Amount of Solvent is mentioned: [Pg.580]    [Pg.107]    [Pg.570]    [Pg.20]    [Pg.89]    [Pg.89]    [Pg.296]    [Pg.440]    [Pg.362]    [Pg.313]    [Pg.279]    [Pg.155]    [Pg.334]    [Pg.357]    [Pg.187]    [Pg.476]    [Pg.1465]    [Pg.1898]    [Pg.112]    [Pg.455]    [Pg.374]    [Pg.52]    [Pg.324]    [Pg.325]   


SEARCH



© 2024 chempedia.info