Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amorphous solids applications

Unlike linear optical effects such as absorption, reflection, and scattering, second order non-linear optical effects are inherently specific for surfaces and interfaces. These effects, namely second harmonic generation (SHG) and sum frequency generation (SFG), are dipole-forbidden in the bulk of centrosymmetric media. In the investigation of isotropic phases such as liquids, gases, and amorphous solids, in particular, signals arise exclusively from the surface or interface region, where the symmetry is disrupted. Non-linear optics are applicable in-situ without the need for a vacuum, and the time response is rapid. [Pg.264]

Activated carbon is an amorphous solid with a large internal surface area/pore strucmre that adsorbs molecules from both the liquid and gas phase [11]. It has been manufactured from a number of raw materials mcluding wood, coconut shell, and coal [11,12]. Specific processes have been developed to produce activated carbon in powdered, granular, and specially shaped (pellet) forms. The key to development of activated carbon products has been the selection of the manufacturing process, raw material, and an understanding of the basic adsorption process to tailor the product to a specific adsorption application. [Pg.239]

This idea that the heat was transfered by a random walk was used early on by Einstein [21] to calculate the thermal conductance of crystals, but, of course, he obtained numbers much lower than those measured in the experiment. As we now know, crystals at low enough T support well-defined quasiparticles—the phonons—which happen to carry heat at these temperatures. Ironically, Einstein never tried his model on the amorphous solids, where it would be applicable in the / fp/X I regime. [Pg.99]

The two extremes of ordering in solids are perfect crystals with complete regularity and amorphous solids that have little symmetry. Most solid materials are crystalline but contain defects. Crystalline defects can profoundly alter the properties of a solid material, often in ways that have usefial applications. Doped semiconductors, described in Section 10-, are solids into which impurity defects are introduced deliberately in order to modify electrical conductivity. Gemstones are crystals containing impurities that give them their color. Sapphires and rubies are imperfect crystals of colorless AI2 O3, red. [Pg.801]

Palladium acetate, [PdO —02CCH3)2l3, possesses a unique quality that makes it attractive for solid state decomposition studies as well as technological applications. It can be spin-coated from solution to form a homogeneous, apparently amorphous solid film. This provides large uniform areas over which we can study the effects of various irradiation sources on the chemical nature of the film. The bulky structure of palladium acetate, shown in Figure 1 (8), may offer a partial explanation of the molecule s ability to achieve an amorphous metastable phase upon rapid evaporation of solvent. [Pg.294]

Diffusion coefficients in amorphous solids such as oxide glasses and glasslike amorphous metals can be measured using any of the methods applicable to crystals. In this way it is possible to obtain the diffusion coefficients of, say, alkah and alkaline earth metals in silicate glasses or the diffusion of metal impurities in amorphous alloys. Unlike diffusion in crystals, diffusion coefficients in amorphous solids tend to alter over time, due to relaxation of the amorphous state at the temperature of the diffusion experiment. [Pg.245]

In amorphous solids there is a considerable disorder and it is impossible to give a description of their structure comparable to that applicable to crystals. In a crystal indeed the identification of all the atoms in the unit cell, at least in principle, is possible with a precise determination of their coordinates. For a glass, only a statistical description may be obtained to this end different experimental techniques are useful and often complementary to each other. Especially important are the methods based on diffraction experiments only these will be briefly mentioned here. The diffraction pattern of an amorphous alloy does not show sharp diffraction peaks as for crystalline materials but only a few broadened peaks. Much more limited information can thus be extracted and only a statistical description of the structure may be obtained. The so-called radial distribution function is defined as ... [Pg.209]

NMR and EPR techniques provide unique information on the microscopic properties of solids, such as symmetry of atomic sites, covalent character of bonds, strength of exchange interactions, and rates of atomic and molecular motion. The recent developments of nuclear double resonance, the Overhauser effect, and ENDOR will allow further elucidation of these properties. Since the catalytic characteristics of solids are presumably related to the detailed electronic and geometric structure of solids, a correlation between the results of magnetic resonance studies and cata lytic properties can occur. The limitation of NMR lies in the fact that only certain nuclei are suitable for study in polycrystalline or amorphous solids while EPR is limited in that only paramagnetic species may be observed. These limitations, however, are counter-balanced by the wealth of information that can be obtained when the techniques are applicable. [Pg.111]

The six sections following the overview chapter deal with aspects of selective oxidation that range from theories and concepts to state-of-the-art engineering applications. Several chapters describe the synthesis, characterization, and performance of potentially attractive new catalytic materials. These catalysts range from single crystals with well-defined crystal faces to highly dispersed or amorphous solids. Most of the actual catalytic reactions studied involve the oxidation of hydrocarbons in the range from to C. ... [Pg.471]

CT-VPP-REDOR) or the pulse duration fp (CT-VPD-REDOR) then produces CT-REDOR curves, from which the second moment may be evaluated with distinctively superior accuracy as compared to the values obtained from a parabolic fit to the conventional REDOR data. When restricting the experiment to short dipolar evolution times, the two-spin approximation may be applied for the data analysis, which proves to be especially attractive for amorphous solids, for which the exact spin geometry is unknovm. The data presented on the model compoimds illustrate the various facets of CT-REDOR NMR spectroscopy. First application examples, namely, the evaluation of the heteronuclear Li-Ti dipolar couplings within the garnet structure of Li5La3Nb20i2, the determi-nation of the intemuclear B- P distance in frustrated Lewis pairs, the analysis of Na- F dipolar interaction in fluormica or Na- P... [Pg.21]

Stimulated by a variety of commercial applications in fields such as xerography, solar energy conversion, thin-film active devices, and so forth, international interest in this subject area has increased dramatically since these early reports. The absence of long-range order invalidates the use of simplifying concepts such as the Bloch theorem, the counterpart of which has proved elusive for disordered systems. After more than a decade of concentrated research, there remains no example of an amorphous solid for the energy band structure, and the mode of electronic transport is still a subject for continued controversy. [Pg.38]

X-ray diffraction experiments are applicable to all crystalline and amorphous solids and to all liquids and dispersions. The intensity of the X-ray scattering depends on the number of electrons in the atoms. Consequently, the obtainable information is limited in materials containing only light atoms. No information is obtained about the locations of hydrogen atoms. [Pg.178]

The simple method just described is applicable as it stands only to isotropic solids, that is, to glasses and amorphous solids in general, and to crystals belonging to the cubic system. In all other crystals the refractive index varies with the direction of vibration of the light in the crystal the optical phenomena are more complex, and it is necessary to disentangle them. [Pg.67]

This section shows, for four examples of increasing complexity, how precipitates are formed and how the properties of the precipitates are controlled to produce a material suitable for catalytic applications. The first two examples comprise silica, which is primarily used as support material and is usually formed as an amorphous solid, and alumina, which is also used as a catalytically active material, and which can be formed in various modifications with widely varying properties as pure precipitated compounds. The other examples are the results of coprecipitation processes, namely Ni/ AI2O3 which can be prepared by several pathways and for which the precipitation of a certain phase determines the reduction behavior and the later catalytic properties, and the precipitation of (VOjHPCU 0.5 H2O which is the precursor of the V/P/O catalyst for butane oxidation to maleic anhydride, where even the formation of a specific crystallographic face with high catalytic activity has to be controlled. [Pg.42]

Molecules are finite figures with at least one singular point in their symmetry description. Thus, point groups are applicable to them. There is no inherent limitation on the available symmetries for molecules. Molecules in the gas phase are considered to be free. They are so far apart that they are unperturbed by interactions from other molecules and thus can be considered isolated from each other. On the other hand, intermolecular interactions may occur between the molecules in condensed phases, i.e., in liquids, melts, amorphous solids, or crystals. In the present discussion all molecules will be assumed unperturbed by their environment, regardless of the phase or state of matter in which they exist. [Pg.98]

This is formed by the application of a modified Bart reaction to 6-nitro-2-aminophenol, the yield of arsinic acid being about 50 per cent. It forms characteristic yellow nodules, which melt mth decomposition at 252 to 254 C. The barium, calcium and magnesium salts are yellow, amorphous solids. [Pg.288]

Glass, rubber, and many plastics are amorphous solids. Recent studies have shown that glass may have some structure. When X-ray diffraction is used to study glass, there appears to be no pattern to the distribution of atoms. When neutrons are used instead, an orderly pattern of silicate units can be detected in some regions. Researchers hope to use this new information to control the structure of glass for optical applications and to produce glass that can conduct electricity. [Pg.403]

In amorphous state, solid polymers retain the disorder characteristic for liquids, except that the molecular movement in amorphous solid state is restrained. The movement of one molecule versus the other is absent, and some typical liquid properties such as flow are absent. At low stress, polymers display elastic properties, reverting to a certain extent to the initial shape in a relaxation process. However, they can be irreversibly deformed upon application of appropriate force. The deformation and flow of polymers is very important for practical purposes and is studied by a branch of science known as rheology (see e.g. [1]). The combination of mechanical force and increased temperature are commonly applied for polymer molding for their practical applications. The polymers that can be made to soften and take a desired shape by the application of heat and pressure are known as thermoplasts, and most linear polymers have thermoplastic properties. [Pg.12]


See other pages where Amorphous solids applications is mentioned: [Pg.1361]    [Pg.1485]    [Pg.543]    [Pg.797]    [Pg.71]    [Pg.65]    [Pg.282]    [Pg.434]    [Pg.434]    [Pg.312]    [Pg.529]    [Pg.917]    [Pg.508]    [Pg.295]    [Pg.39]    [Pg.195]    [Pg.99]    [Pg.161]    [Pg.619]    [Pg.193]    [Pg.133]    [Pg.609]    [Pg.427]    [Pg.222]    [Pg.54]    [Pg.63]    [Pg.71]    [Pg.3567]    [Pg.208]    [Pg.70]   


SEARCH



Amorphous applications

Amorphous solids

Properties and Applications of Sol-Gel Materials Functionalized Porous Amorphous Solids (Monoliths)

Solid amorphous solids

© 2024 chempedia.info