Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amorphous applications

Resin Tensile Modulus, MPa Impact Strength, 1/cm Melting Temperature (U °C (semicrystalline) Glass Transition Temperature (g, °C (amorphous) Applications... [Pg.41]

The oriented overgrowth of a crystalline phase on the surface of a substrate that is also crystalline is called epitaxial growth [104]. Usually it is required that the lattices of the two crystalline phases match, and it can be a rather complicated process [105]. Some new applications enlist amorphous substrates or grow new phases on a surface with a rather poor lattice match. [Pg.341]

Standard polyester fibers contain no reactive dye sites. PET fibers are typically dyed by diffusiag dispersed dyestuffs iato the amorphous regions ia the fibers. Copolyesters from a variety of copolymeri2able glycol or diacid comonomers open the fiber stmcture to achieve deep dyeabiHty (7,28—30). This approach is useful when the attendant effects on the copolyester thermal or physical properties are not of concern (31,32). The addition of anionic sites to polyester usiag sodium dimethyl 5-sulfoisophthalate [3965-55-7] has been practiced to make fibers receptive to cationic dyes (33). Yams and fabrics made from mixtures of disperse and cationicaHy dyeable PET show a visual range from subde heather tones to striking contrasts (see Dyes, application and evaluation). [Pg.325]

The TPX experimental product of Mitsubishi Petrochemical Ind. (221) is an amorphous, transparent polyolefin with very low water absorption (0.01%) and a glass-transition temperature comparable to that of BPA-PC (ca 150°C). Birefringence (<20 nm/mm), flexural modulus, and elongation at break are on the same level as PMMA (221). The vacuum time, the time in minutes to reach a pressure of 0.13 mPa (10 torr), is similarly short like that of cychc polyolefins. Typical values of TPX are fisted in Table 11. A commercial application of TPX is not known as of this writing. [Pg.162]

Applications. Among the P—O- and P—N-substituted polymers, the fluoroalkoxy- and aryloxy-substituted polymers have so far shown the greatest commercial promise (14—16). Both poly[bis(2,2,2-trifluoroethoxy)phosphazene] [27290-40-0] and poly(diphenoxyphosphazene) [28212-48-8] are microcrystalline, thermoplastic polymers. However, when the substituent symmetry is dismpted with a randomly placed second substituent of different length, the polymers become amorphous and serve as good elastomers. Following initial development of the fluorophosphazene elastomers by the Firestone Tire and Rubber Co., both the fluoroalkoxy (EYPEL-F) and aryloxy (EYPEL-A) elastomers were manufactured by the Ethyl Corp. in the United States from the mid-1980s until 1993 (see ELASTOLffiRS,SYNTHETic-PHOSPHAZENEs). [Pg.257]

Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector. Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector.
A. Madan and M. Shaw, The Physics and Applications of Amorphous Semiconductors Academic Press, Inc., San Diego, Calif., 1988. [Pg.363]

Applications. In 1994, approximately 675,000 metric tons of amorphous precipitated sihca were manufactured for sale (38,62). Degussa, J. M. Huber, and PPG in the United States and in Europe, and Akzo (Germany), Aluflour (Sweden), Crosfield (United Kingdom), Nippon Sihca (Japan), Rhc ne-Poulenc (France), Shionogi (Japan), Tokuyama Soda (Japan), and Vitro PQ (Mexico) are the primary producers. [Pg.492]

Amorphous metals Antiseptics Boron alloys Cosmetics Nuclear applications Nylon... [Pg.205]

EXAFS is a nondestructive, element-specific spectroscopic technique with application to all elements from lithium to uranium. It is employed as a direct probe of the atomic environment of an X-ray absorbing element and provides chemical bonding information. Although EXAFS is primarily used to determine the local structure of bulk solids (e.g., crystalline and amorphous materials), solid surfaces, and interfaces, its use is not limited to the solid state. As a structural tool, EXAFS complements the familiar X-ray diffraction technique, which is applicable only to crystalline solids. EXAFS provides an atomic-scale perspective about the X-ray absorbing element in terms of the numbers, types, and interatomic distances of neighboring atoms. [Pg.215]

Examples of the unique insights obtained by solid state NMR applications to materials science include the Si/Al distribution in zeolites, the hydrogen microstructure in amorphous films of hydrogenated silicon, and the mechanism for the zeolite-catalyzed oligomerization of olefins. ... [Pg.461]

Whilst, chemically, SBS triblocks are similar to SBR, for example they do not show measurable breakdown on mastication, they are seriously deficient in one respect, they show a high level of creep. This would indicate that the concept of all the styrene blocks being embedded in the domains with all of the polybutadiene blocks being in the amorphous matrix is rather too simplistic. It has also resulted in these materials not being used extensively in traditional rubber applications. One exception from this is in footwear, where blends of SBS and polystyrene have been used with noted success for crepe soles. [Pg.298]

Unlike linear optical effects such as absorption, reflection, and scattering, second order non-linear optical effects are inherently specific for surfaces and interfaces. These effects, namely second harmonic generation (SHG) and sum frequency generation (SFG), are dipole-forbidden in the bulk of centrosymmetric media. In the investigation of isotropic phases such as liquids, gases, and amorphous solids, in particular, signals arise exclusively from the surface or interface region, where the symmetry is disrupted. Non-linear optics are applicable in-situ without the need for a vacuum, and the time response is rapid. [Pg.264]

Activated carbon is an amorphous solid with a large internal surface area/pore strucmre that adsorbs molecules from both the liquid and gas phase [11]. It has been manufactured from a number of raw materials mcluding wood, coconut shell, and coal [11,12]. Specific processes have been developed to produce activated carbon in powdered, granular, and specially shaped (pellet) forms. The key to development of activated carbon products has been the selection of the manufacturing process, raw material, and an understanding of the basic adsorption process to tailor the product to a specific adsorption application. [Pg.239]

Coutts, T.J. (1974) Electrical Conduction in Thin Metal Films (Elsevier, Amsterdam). DeCristofaro, N. (1998) Amorphous metals in electric-power distribution applications, MRS Bull. 23(5). 50. [Pg.419]

Block copolymers can contain crystalline or amorphous hard blocks. Examples of crystalline block copolymers are polyurethanes (e.g. B.F. Goodrich s Estane line), polyether esters (e.g. Dupont s Hytrel polymers), polyether amides (e.g. Atofina s Pebax grades). Polyurethanes have enjoyed limited utility due to their relatively low thermal stability use temperatures must be kept below 275°F, due to the reversibility of the urethane linkage. Recently, polyurethanes with stability at 350°F for nearly 100 h have been claimed [2]. Polyether esters and polyether amides have been explored for PSA applications where their heat and plasticizer resistance is a benefit [3]. However, the high price of these materials and their multiblock architecture have limited their use. All of these crystalline block copolymers consist of multiblocks with relatively short, amorphous, polyether or polyester mid-blocks. Consequently they can not be diluted as extensively with tackifiers and diluents as styrenic triblock copolymers. Thereby it is more difficult to obtain strong, yet soft adhesives — the primary goals of adding rubber to hot melts. [Pg.713]

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]


See other pages where Amorphous applications is mentioned: [Pg.863]    [Pg.863]    [Pg.1361]    [Pg.1485]    [Pg.1839]    [Pg.314]    [Pg.314]    [Pg.262]    [Pg.253]    [Pg.154]    [Pg.491]    [Pg.494]    [Pg.1707]    [Pg.309]    [Pg.172]    [Pg.224]    [Pg.490]    [Pg.44]    [Pg.47]    [Pg.284]    [Pg.566]    [Pg.721]    [Pg.270]    [Pg.298]    [Pg.361]    [Pg.444]    [Pg.557]    [Pg.654]    [Pg.768]    [Pg.145]    [Pg.15]    [Pg.308]    [Pg.424]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Amorphous alloys technological applications

Amorphous fluoropolymer applications

Amorphous glasses synthetic applications

Amorphous pharmaceutical materials applications

Amorphous solids applications

Applications of Amorphous Perfluoropolymers

Applications of amorphous silicon devices

Applications, pharmaceutical amorphous drugs

On the Optimal Design of Amorphous Mangaense Oxide For Applications in Power Sources

Properties and Applications of Sol-Gel Materials Functionalized Porous Amorphous Solids (Monoliths)

© 2024 chempedia.info