Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia high temperature

R.D. Farr, and C.G. Vayenas, Ammonia High Temperature Solid Electrolyte Fuel Cell,... [Pg.108]

Farr R D and Vayenas C G, Ammonia high temperature sohd electrolyte fuel cell , JElectrochem Soc., 1980,127,1478-1483. [Pg.38]

C. A typical aromatic amine. Best prepared by the prolonged action of concentrated ammonia solution at a high temperature upon anthraquinone-l-sulphonic acid in the presence of BaClj and by reduction of the corresponding nitro compound or by amination of the chloroanthraquinone. [Pg.29]

Colourless crystals m.p. 50 C, b.p. 301 C. Basic and forms sparingly soluble salts with mineral acids. Prepared by the reduction of 1-nitronaphthalene with iron and a trace of hydrochloric acid or by the action of ammonia upon l-naphlhol at a high temperature and pressure. [Pg.270]

Uses. 3-Pentenenitrile, 3PN, is used entirely by the manufacturers to make adiponitrile. i7j -2-Pentenenitrile, 2PN, can be cycli2ed catalyticaHy at high temperature to produce pyndine, a solvent and agncultural chemical intermediate. 2PN is also chlorinated to manufacture pentachloropyndine, an intermediate in the insecticide Dursban produced by Dow. Addition of ammonia to 2PN foUowed by reduction leads to 1,3-pentadiamine (Dytek ep), which is used as a curing agent for epoxy coatings and as a chain modifier in polyurethanes. [Pg.226]

Urea is also used as feed supplement for mminants, where it assists in the utilization of protein. Urea is one of the raw materials for urea—formaldehyde resins. Urea (with ammonia) pyrolyzes at high temperature and pressure to form melamine plastics (see also Cyanamides). Urea is used in the preparation of lysine, an amino acid widely used in poultry feed (see Amino acids Feeds and feed additives, petfoods). It also is used in some pesticides. [Pg.310]

Butyrolactone reacts rapidly and reversibly with ammonia or an amine forming 4-hydroxybutyramides (175), which dissociate to the starting materials when heated. At high temperatures and pressures the hydroxybutyramides slowly and irreversibly dehydrate to pyrroHdinones (176). A copper-exchanged Y-2eohte (177) or magnesium siUcate (178) is said to accelerate this dehydration. [Pg.111]

Sulfomethylation. The reaction of formaldehyde and sodium bisulfite [7631-90-5] with polyacrylamide under alkaline conditions to produce sulfomethylated polyacrylamides has been known for many years (44—46). A more recent pubHcation (47) suggests, however, that the expected sulfomethyl substitution is not obtained under the previously described strongly alkaline conditions of pH 10—12. This C-nmr study indicates that hydrolysis of polyacrylamide occurs and the resulting ammonia reacts with the NaHSO and formaldehyde. A recent patent claims a new high pressure, high temperature process at slightly acid pH for preparation of sulfomethylated polyacrylamide (48). [Pg.141]

Early in the twentieth century, the first attempts to manufacture formamide directiy from ammonia and carbon monoxide under high temperature and pressure encountered difficult technical problems and low yields (23). Only the introduction of alkaU alkoxides in alcohoHc solution, ie, the presence of alcoholate as a catalyst, led to the development of satisfactory large-scale formamide processes (24). [Pg.508]

At elevated temperatures, CaH2 reacts with halogens, sulfur, phosphoms, alcohols, and ammonia. At high temperatures, it reacts with refractory metal oxides and haUdes. Calcium hydride is substantially inert to organic compounds that do not contain acidic hydrogens. [Pg.298]

High temperature steam reforming of natural gas accounts for 97% of the hydrogen used for ammonia synthesis in the United States. Hydrogen requirement for ammonia synthesis is about 336 m /t of ammonia produced for a typical 1000 t/d ammonia plant. The near-term demand for ammonia remains stagnant. Methanol production requires 560 m of hydrogen for each ton produced, based on a 2500-t/d methanol plant. Methanol demand is expected to increase in response to an increased use of the fuel—oxygenate methyl /-butyl ether (MTBE). [Pg.432]

Aromatic rings in lignin may be converted to cyclohexanol derivatives by catalytic hydrogenation at high temperatures (250°C) and pressures (20—35 MPa (200—350 atm)) using copper—chromium oxide as the catalyst (11). Similar reduction of aromatic to saturated rings has been achieved using sodium in hquid ammonia as reductants (12). [Pg.139]

In 1974 a 1000 t/d ammonia plant went into operation near Johaimesburg, South Africa. The lignitic (subbituminous) coal used there contains about 14% ash, 36% volatile matter, and 1% sulfur. The plant has six Koppers-Totzek low pressure, high temperature gasifiers. Refrigerated methanol (—38° C, 3.0 MPa (30 atm)) is used to remove H2S. A 58% CO mixture reacts with steam over an iron catalyst to produce H2. The carbon dioxide is removed with methanol (at —58° C and 5.2 MPa (51 atm)). Ammonia synthesis is carried out at ca 22 MPa (220 atm) (53) (see Ammonia). [Pg.160]

In a vacuum, uncoated molybdenum metal has an unlimited life at high temperatures. This is also tme under the vacuum-like conditions of outer space. Pure hydrogen, argon, and hehum atmospheres are completely inert to molybdenum at all temperatures, whereas water vapor, sulfur dioxide, and nitrous and nitric oxides have an oxidizing action at elevated temperatures. Molybdenum is relatively inert to carbon dioxide, ammonia, and nitrogen atmospheres up to about 1100°C a superficial nitride film may be formed at higher temperatures in the latter two gases. Hydrocarbons and carbon monoxide may carburize molybdenum at temperatures above 1100°C. [Pg.465]

HydrometallurgicalProcesses. HydrometaHurgical refining also is used to extract nickel from sulfide ores. Sulfide concentrates can be leached with ammonia (qv) to dissolve the nickel, copper, and cobalt sulfides as amines. The solution is heated to precipitate copper, and the nickel and cobalt solution is oxidized to sulfate and reduced, using hydrogen at a high temperature and pressure to precipitate the nickel and cobalt. The nickel is deposited as a 99 wt % pure powder. [Pg.3]

Reforming is completed in a secondary reformer, where air is added both to elevate the temperature by partial combustion of the gas stream and to produce the 3 1 H2 N2 ratio downstream of the shift converter as is required for ammonia synthesis. The water gas shift converter then produces more H2 from carbon monoxide and water. A low temperature shift process using a zinc—chromium—copper oxide catalyst has replaced the earlier iron oxide-catalyzed high temperature system. The majority of the CO2 is then removed. [Pg.83]

ALkanolainines aie manufactuied fiom the coiiesponding oxide and ammonia. Anhydtous 01 aqueous ammonia may be used, although anhydtous ammonia is typically used to favor mono alkan olamine production and requires high temperature and pressure (20). Mono-, di-, and trialkanolamines are produced in the reactor and sent to downstream columns for separation (Fig. 2). [Pg.7]

Allylamine. This amine can be synthesized by reaction of aHyl chloride with ammonia at the comparatively high temperature of 50—100°C (49), or at lower temperatures using CUCI2 or CuCl (51) as the catalyst. In aH such methods, a mixture of monoaHyl, diaHyl, and triaHyl amines is obtained. [Pg.77]

Only about 10% of the total urea production is used for amino resins, which thus appear to have a secure source of low cost raw material. Urea is made by the reaction of carbon dioxide and ammonia at high temperature and pressure to yield a mixture of urea and ammonium carbamate the latter is recycled. [Pg.322]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Raw Material and Energy Aspects to Pyridine Manufacture. The majority of pyridine and pyridine derivatives are based on raw materials like aldehydes or ketones. These are petroleum-derived starting materials and their manufacture entails cracking and distillation of alkanes and alkenes, and oxidation of alkanes, alkenes, or alcohols. Ammonia is usually the source of the nitrogen atom in pyridine compounds. Gas-phase synthesis of pyridines requires high temperatures (350—550°C) and is therefore somewhat energy intensive. [Pg.333]

Pyrrohdinone (2-pyrrohdone, butyrolactam or 2-Pyrol) (27) was first reported in 1889 as a product of the dehydration of 4-aminobutanoic acid (49). The synthesis used for commercial manufacture, ie, condensation of butyrolactone with ammonia at high temperatures, was first described in 1936 (50). Other synthetic routes include carbon monoxide insertion into allylamine (51,52), hydrolytic hydrogenation of succinonitnle (53,54), and hydrogenation of ammoniacal solutions of maleic or succinic acids (55—57). Properties of 2-pyrrohdinone are Hsted in Table 2. 2-Pyrrohdinone is completely miscible with water, lower alcohols, lower ketones, ether, ethyl acetate, chloroform, and benzene. It is soluble to ca 1 wt % in aUphatic hydrocarbons. [Pg.359]

Metal teUurides for semiconductors are made by direct melting, melting with excess teUurium and volatilizing the excess under reduced pressure, passing teUurium vapor in an inert gas carrier over a heated metal, and high temperature reduction of oxy compounds with hydrogen or ammonia. [Pg.386]


See other pages where Ammonia high temperature is mentioned: [Pg.105]    [Pg.105]    [Pg.66]    [Pg.215]    [Pg.175]    [Pg.298]    [Pg.236]    [Pg.415]    [Pg.421]    [Pg.499]    [Pg.500]    [Pg.159]    [Pg.224]    [Pg.54]    [Pg.54]    [Pg.57]    [Pg.67]    [Pg.74]    [Pg.333]    [Pg.173]    [Pg.270]    [Pg.208]    [Pg.220]    [Pg.263]    [Pg.337]    [Pg.339]    [Pg.393]    [Pg.281]   
See also in sourсe #XX -- [ Pg.7 , Pg.8 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 ]




SEARCH



Ammonia temperature

Case Study Kinetics of High-Temperature Ammonia Oxidation in an Annular Reactor

Kinetics high-temperature ammonia oxidation

© 2024 chempedia.info