Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino Metabolism

The choice of solid-phase microextraction sorbent phase was shown to be important especially for the amino metabolities of trinitrotoluene and RDX, which were extracted better on polar phases. Although equilibration times were quite lengthy, on the order of 30 min or greater, a sampling time of only 10 min was shown to be sufficient for achieving low part-per-billion (ppb) to part-per-trillion (ppt) detection limits for trinitrotoluene and the amino metabolities in real seawater samples. Solid-phase microextraction was ideal for rapid screening of explosives in seawater samples. [Pg.413]

HA, heterocyclic amine AA, aromatic amine PA, polyamine Al, aliphatic amine N, nitrosamine MAM, Musk amino metabolities ABDACs, alkylbenzyldimethylammonium chlorides BCD, electron capture detection AED, atomic emission detection FID, flame ionization detection FPD, flame photometric detection GC-MS-SIM, GC-MS selected ion monitoring NPD, nitrogen phosphorus detection NlCl, negative-ion chemical ionization El, electron ionization CGC, capihary GC A, air H, water W, waste. [Pg.397]

Organic acidemias are disorders of branched-chain amino metabolism in which non-amino organic acids accumulate in serum and urine. [Pg.187]

The role of skeletal muscle in the amino metabolism of man has recently been elegantly elucidated by Cahill and his colleagues (Pozefsky, 1969 Felig and Wahren, 1971). By measuring... [Pg.19]

An interesting set of central nervous system properties has also been discovered and studied (Table VI-10). The work devoted to piscaine must be emphasized besides finding hypnotic properties of 2-amino-4-phenyl-thiazole on fish, the authors studied the structure of the metabolite, as well as the localization of the (radio labeled) metabolic product in various organs. Recently, thiazol-4-yl methoxyamine was shown to inhibit the development of morphine tolerance (1607). 5-Aminothiazole derivatives such as 419a were proposed as cardiovascular agents (1608, 1610). Substitution of the 5-aminothiazole radical on the cephalophosphorin structure gives a series of antibacterial products (1609). [Pg.138]

Metabolic Functions. Zinc is essential for the function of many enzymes, either in the active site, ie, as a nondialyzable component, of numerous metahoenzymes or as a dialyzable activator in various other enzyme systems (91,92). WeU-characterized zinc metahoenzymes are the carboxypeptidases A and B, thermolysin, neutral protease, leucine amino peptidase, carbonic anhydrase, alkaline phosphatase, aldolase (yeast), alcohol... [Pg.384]

Proteias are metabolized coatiauously by all living organisms, and are ia dyaamic equilibrium ia living cells (6,12). The role of amino acids ia proteia biosyathesis has beea described (2). Most of the amino acids absorbed through the digestioa of proteias are used to replace body proteias. The remaining portioa is metabolized iato various bioactive substances such as hormones and purine and pyrimidine nucleotides, (the precursors of DNA and RNA) or is consumed as an energy source (6,13). [Pg.271]

Biosynthesis of Protein. The dynamic equilibrium of body protein was confirmed by animal experiments using A/-labeled amino acids in 1939 (104). The human body is maintained by a continuous equilibrium between the biosynthesis of proteins and their degradative metabolism where the nitrogen lost as urea (about 85% of total excreted nitrogen) and other nitrogen compounds is about 12 g/d under ordinary conditions. The details of protein biosynthesis in living cells have been described (2,6) (see also Proteins). [Pg.282]

The safety of aspartame for human consumption has been studied extensively. The results of these studies have satisfied the FDA. However, because phenylalanine is a metaboUte of aspartame, people who lack the abiUty to metabolize this amino acid should refrain from using aspartame. Any aspartame-containing diet food must indicate that the product contains phenylalanine. [Pg.275]

Physiological Role of Citric Acid. Citric acid occurs ia the terminal oxidative metabolic system of virtually all organisms. This oxidative metabohc system (Fig. 2), variously called the Krebs cycle (for its discoverer, H. A. Krebs), the tricarboxyUc acid cycle, or the citric acid cycle, is a metaboHc cycle involving the conversion of carbohydrates, fats, or proteins to carbon dioxide and water. This cycle releases energy necessary for an organism s growth, movement, luminescence, chemosynthesis, and reproduction. The cycle also provides the carbon-containing materials from which cells synthesize amino acids and fats. Many yeasts, molds, and bacteria conduct the citric acid cycle, and can be selected for thek abiUty to maximize citric acid production in the process. This is the basis for the efficient commercial fermentation processes used today to produce citric acid. [Pg.182]

The World Wide Web has transformed the way in which we obtain and analyze published information on proteins. What only a few years ago would take days or weeks and require the use of expensive computer workstations can now be achieved in a few minutes or hours using personal computers, both PCs and Macintosh, connected to the internet. The Web contains hundreds of sites of Interest to molecular biologists, many of which are listed in Pedro s BioMolecular Research Tools (http // www.fmi.ch/biology/research tools.html). Many sites provide free access to databases that make it very easy to obtain information on structurally related proteins, the amino acid sequences of homologous proteins, relevant literature references, medical information and metabolic pathways. This development has opened up new opportunities for even non-specialists to view and manipulate a structure of interest or to carry out amino-acid sequence comparisons, and one can now rapidly obtain an overview of a particular area of molecular biology. We shall here describe some Web sites that are of interest from a structural point of view. Updated links to these sites can be found in the Introduction to Protein Structure Web site (http // WWW.ProteinStructure.com/). [Pg.393]

A quote from a biochemistry text is instructive here. "This is not an easy reaction in organic chemistry. It is, however, a very important type of reaction in metabolic chemistry and is an integral step in the oxidation of carbohydrates, fats, and several amino acids." G. L. Zubay, Biochemistry, 4th ed., William C. Brown Publishers, 1996, p. 333. [Pg.202]

The term chiral recognition refers to a process in which some chiral receptor or reagent interacts selectively with one of the enantiomers of a chiral molecule. Very high levels of chiral recognition are cormnon in biological processes. (—)-Nicotine, for example, is much more toxic than (-F)-nicotine, and (-F)-adrenaline is more active than (—)-adrenaline in constricting blood vessels. (—)-Thyroxine, an amino acid of the thyroid gland that speeds up metabolism, is one of the most widely used of all prescription... [Pg.295]

Heterocyclic enamines A -pyrroline and A -piperideine are the precursors of compounds containing the pyrrolidine or piperidine rings in the molecule. Such compounds and their N-methylated analogs are believed to originate from arginine and lysine (291) by metabolic conversion. Under cellular conditions the proper reaction with an active methylene compound proceeds via an aldehyde ammonia, which is in equilibrium with other possible tautomeric forms. It is necessary to admit the involvement of the corresponding a-ketoacid (12,292) instead of an enamine. The a-ketoacid constitutes an intermediate state in the degradation of an amino acid to an aldehyde. a-Ketoacids or suitably substituted aromatic compounds may function as components in active methylene reactions (Scheme 17). [Pg.295]

Mitochondria Mitochondria are organelles surrounded by two membranes that differ markedly in their protein and lipid composition. The inner membrane and its interior volume, the matrix, contain many important enzymes of energy metabolism. Mitochondria are about the size of bacteria, 1 fim. Cells contain hundreds of mitochondria, which collectively occupy about one-fifth of the cell volume. Mitochondria are the power plants of eukaryotic cells where carbohydrates, fats, and amino acids are oxidized to CO9 and H9O. The energy released is trapped as high-energy phosphate bonds in ATR... [Pg.27]

Certain amino acids and their derivatives, although not found in proteins, nonetheless are biochemically important. A few of the more notable examples are shown in Figure 4.5. y-Aminobutyric acid, or GABA, is produced by the decarboxylation of glutamic acid and is a potent neurotransmitter. Histamine, which is synthesized by decarboxylation of histidine, and serotonin, which is derived from tryptophan, similarly function as neurotransmitters and regulators. /3-Alanine is found in nature in the peptides carnosine and anserine and is a component of pantothenic acid (a vitamin), which is a part of coenzyme A. Epinephrine (also known as adrenaline), derived from tyrosine, is an important hormone. Penicillamine is a constituent of the penicillin antibiotics. Ornithine, betaine, homocysteine, and homoserine are important metabolic intermediates. Citrulline is the immediate precursor of arginine. [Pg.87]

All of the structures shown in Figures 7.2 and 7.3 are D-configurations, and the D-forms of monosaccharides predominate in nature, just as L-amino acids do. These preferences, established in apparently random choices early in evolution, persist uniformly in nature because of the stereospecificity of the enzymes that synthesize and metabolize these small molecules. [Pg.212]


See other pages where Amino Metabolism is mentioned: [Pg.390]    [Pg.390]    [Pg.101]    [Pg.657]    [Pg.257]    [Pg.230]    [Pg.283]    [Pg.297]    [Pg.305]    [Pg.413]    [Pg.468]    [Pg.50]    [Pg.231]    [Pg.144]    [Pg.320]    [Pg.323]    [Pg.325]    [Pg.325]    [Pg.515]    [Pg.2211]    [Pg.47]    [Pg.60]    [Pg.103]    [Pg.39]    [Pg.252]    [Pg.268]    [Pg.292]    [Pg.10]    [Pg.116]    [Pg.301]    [Pg.327]    [Pg.482]    [Pg.488]    [Pg.566]    [Pg.574]   


SEARCH



© 2024 chempedia.info