Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine amino acid family

Some other types of macrocycle compounds have been synthesized using adamantane and its derivatives. Recently, a new class of cyclobisamides has been synthesized using adamantane derivatives, which shows the general profiles of amino acid (serine or cystine)-ether composites. They were shown to be efficient ion transporters (especially for Na+ ions) in the model membranes [159]. Another interesting family of compounds to which adamantane derivatives have been introduced in order to obtain cyclic frameworks is crown ethers [160]. The outstanding feature of these adamantane-bearing crown ethers (which are also called diamond crowns ) is that ot-amino acids can be incorporated into the adamantano-crown backbone [160]. This family of... [Pg.242]

As already noted the serine family includes three amino acids Serine, glycine, and cysteine (see fig. 21.1). We focus on cysteine synthesis, which funnels sulfur into the biochemical world and supplies the cysteine needed for biosynthesis. [Pg.495]

PAH, a nonheme iron-containing enzyme, is a member of a larger BI Independent amino acid hydroxylase family. In addition to PAH, the enzyme family includes tyrosine hydroxylase and tryptophan hydroxylase. The enzymes in this family participate in critical metabolic steps and are tissue specific. PAH catabolizes excess dietary PA and synthesizes tyrosine. In adrenal and nervous tissue, tyrosine hydroxylase catalyzes the initial steps in the synthesis of dihydrox-yphenylalanine. In the brain, tryptophan is converted to 5-hydroxytryptophan as the first step of serotonin synthesis. Consequently, these enzymes are highly regulated not only by their expression in different tissues but also by reversible phosphorylation of a critical serine residue found in regulatory domains of the three enzymes. Since all three enzymes are phosphorylated and dephosphorylated by different kinases and phosphatases in response to the need for the different synthetic products, it is not unexpected that the exact regulatory signal for each member of the enzyme family is unique. [Pg.206]

Several proteins have been identified which act as antagonists in the selection of splice sites. The SF2 protein (and related proteins) belong to the family of SR proteins and support the use of 5 splice sites. SR proteins contain an RNA recognition motif (RRM) and are rich in the amino acids serine and arginine. Another protein, the hnRNP A1 protein supports the use of 3 splice sites. [Pg.73]

Thiostrepton family members are biosynthesized by extensive modification of simple peptides. Thus, from amino acid iacorporation studies, the somewhat smaller (mol wt 1200) nosiheptide, which contains five thiazole rings, a trisubstituted iadole, and a trisubstituted pyridine, is speculated to arise from a simple dodecapeptide. This work shows that the thiazole moieties arise from the condensation of serine with cysteiae (159,160). Only a few reports on the biosynthesis of the thiostrepton family are available (159,160). Thiostrepton is presently used ia the United States only as a poly antimicrobial vetetinary ointment (Panalog, Squibb), but thiazole antibiotics have, ia the past, been used as feed additives ia various parts of the world. General (158) and mechanism of action (152) reviews on thiostrepton are available. [Pg.153]

The serine proteinases all have the same substrate, namely, polypeptide chains of proteins. However, different members of the family preferentially cleave polypeptide chains at sites adjacent to different amino acid residues. The structural basis for this preference lies in the side chains that line the substrate specificity pocket in the different enzymes. [Pg.212]

The serine proteases are the most extensively studied class of enzymes. These enzymes are characterized by the presence of a unique serine amino acid. Two major evolutionary families are presented in this class. The bacterial protease subtilisin and the trypsin family, which includes the enzymes trypsin, chymotrypsin, elastase as well as thrombin, plasmin, and others involved in a diverse range of cellular functions including digestion, blood clotting, hormone production, and complement activation. The trypsin family catalyzes the reaction ... [Pg.170]

The family of serine proteases has been subjected to intensive studies of site-directed mutagenesis. These experiments provide unique information about the contributions of individual amino acids to kcat and KM. Some of the clearest conclusions have emerged from studies in subtilisin (Ref. 9), where the oxyanion intermediate is stabilized by t>e main-chain hydrogen bond of Ser 221 and an hydrogen bond from Asn 155 (Ref. 2). Replacement of Asn 155 (e.g., the Asn 155— Ala 155 described in Fig. 7.9) allows for a quantitative assessment of the effect of the protein dipoles on Ag. ... [Pg.184]

NS3 is a 631 amino acid protein, and its first 180 amino acids encode a serine protease of the chymotrypsin family (Figure 2.2A). It has a typical chymotrypsin-family fold consisting of two jS-barrels, with catalytic triad residues at the interface. His-57 and Asp-81 are contributed by the N-terminal jS-barrel and Ser-139 from the C-terminal jS-barrel. NS3 and closely related viral proteases are significantly smaller than other members of the chymotrypsin family, and many of the loops normally found between adjacent jS-strands in trypsin proteases are truncated in NS3 [31]. Probably... [Pg.70]

Amino Acid Biosynthesis Aromatic amino acid family Aspartate family Glutamate family Pyruvate family Serine family Histidine family Other... [Pg.385]

The second family of secreted proteins that is covalently lipidated is the family of Wnt proteins. They are also involved in numerous processes like proliferation of stem cells, specification of the neural crest, and the expanding of specific cell types. The correct regulation of this pathway is important for animal development. Willert and coworkers were the first to isolate an active Wnt molecule. Mass spectroscopy studies carried out with the isolated protein revealed that cysteine 93 is palmitoylated. Mutating this amino acid to alanine led to almost complete loss of the signaling activity. Later in 2006, a second lipidation was found on a serine in Wnt3a. " In this case, the hydroxyl side chain is acylated with palmitoleic acid. This unsaturated fatty acid seems to be crucial for the progression of the protein through the secretory pathway. The attachment of two different lipid chains may therefore serve different functions. ... [Pg.538]

Non-essential amino acids are those that arise by transamination from 2-oxoacids in the intermediary metabolism. These belong to the glutamate family (Glu, Gin, Pro, Arg, derived from 2-oxoglutarate), the aspartate family (only Asp and Asn in this group, derived from oxaloacetate), and alanine, which can be formed by transamination from pyruvate. The amino acids in the serine family (Ser, Gly, Cys) and histidine, which arise from intermediates of glycolysis, can also be synthesized by the human body. [Pg.184]


See other pages where Serine amino acid family is mentioned: [Pg.973]    [Pg.682]    [Pg.60]    [Pg.39]    [Pg.481]    [Pg.231]    [Pg.562]    [Pg.211]    [Pg.216]    [Pg.182]    [Pg.60]    [Pg.210]    [Pg.289]    [Pg.885]    [Pg.1239]    [Pg.54]    [Pg.132]    [Pg.251]    [Pg.265]    [Pg.251]    [Pg.169]    [Pg.522]    [Pg.211]    [Pg.294]    [Pg.392]    [Pg.399]    [Pg.809]    [Pg.148]    [Pg.542]    [Pg.205]    [Pg.306]    [Pg.274]    [Pg.95]    [Pg.40]    [Pg.302]    [Pg.132]    [Pg.150]    [Pg.124]   
See also in sourсe #XX -- [ Pg.495 , Pg.496 ]




SEARCH



Amino acid families

Amino acid serine

Serine family

© 2024 chempedia.info