Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-Hydroxy amines

Dicarbonsaure-imide ergeben als cyclische sekundare Carbonsaure-amide mit Hydri-den die verschiedensten Reduktionsprodukte, z. B. Hydroxy-lactame, Lactame, cyclische Amine, a>-Hydroxy-carbonsaureamide und a>-Amino-alkohole4. [Pg.253]

The title phosphonate and related substances undergo thermal decomposition to B-acyl ketenes at temperatures in excess of 50°C. Thus thermolysis in the presence of alcohols, amines, a-hydroxy esters, and a-amino esters affords the corresponding g-keto esters and amides the latter two classes can be cyclized upon subsequent base treatment to unsaturated tetronic and tetramic acids and the related phosphonate reagents. ... [Pg.100]

Fig. 32 OS supported oiganocatalysts tertiary amine, A -hydroxy-phthalimide and chiral pyrolidines... Fig. 32 OS supported oiganocatalysts tertiary amine, A -hydroxy-phthalimide and chiral pyrolidines...
Optically active cyanohydrins can be easily transformed to P-hydroxy amines, a-hydroxy and a-amino carboxylic acids, which represent versatile intermediates for the synthesis of biologically important compounds, including insecticides and medicines [189, 190]. Asymmetric cyanation of carbonyl compounds catalyzed by chiral metal complexes, particularly titanium compounds, has provided one of the most convenient protocols to the access of these type of compounds. The first example of catalytic asymmetric cyanation of aliphatic aldehydes was realized in Reetz s group using BINOL-Ti complex as the catalyst to give the cyanohydrins in up to 82% ee [104] (Scheme 14.85). [Pg.240]

If a bromomethyl- or vinyl-substituted cyclopropane carbon atom bears a hydroxy group, the homoallyiic rearrangement leads preferentially to cyclobutanone derivatives (J. Sa-laun, 1974). Addition of amines to cydopropanone (N. J. Turro, 1966) yields S-lactams after successive treatment with tert-butyl hypochlorite and silver(I) salts (H.H. Wasserman, 1975). For intramolecular cyclopropane formation see section 1.16. [Pg.77]

The dependence of chiral recognition on the formation of the diastereomeric complex imposes constraints on the proximity of the metal binding sites, usually either an hydroxy or an amine a to a carboxyHc acid, in the analyte. Principal advantages of this technique include the abiHty to assign configuration in the absence of standards, enantioresolve non aromatic analytes, use aqueous mobile phases, acquire a stationary phase with the opposite enantioselectivity, and predict the likelihood of successful chiral resolution for a given analyte based on a weU-understood chiral recognition mechanism. [Pg.63]

Another fluorescent pigment class (23) is based on a urethane-type resin the primary raw materials are isocyanates, amines, and hydroxy compounds. [Pg.301]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

Reaction of cyanohydrins with absolute ethanol in the presence of HCl yields the ethyl esters of a-hydroxy acids (3). A/-substituted amides can be synthesized by heating a cyanohydrin and an amine in water. Thus formaldehyde cyanohydrin and P-hydroxyethylamine lead to A/- (P-hydroxyethyl)hydroxyacetamide (4). [Pg.411]

Treatment of a-hydroxy-ketones or -aldehydes with ammonium acetate (65BSF3476, 68BSF4970) results in the formation of dihydropyrazines, presumably by direct amination of the hydroxyketone followed by self-condensation (79AJC1281). Low yields of pyrazines have been noted in the electrolysis of ketones in admixture with KI and ammonia, and again it appears probable that the a-aminoketone derived by way of the a-iodoketone is the intermediate (69CI(L)237>. [Pg.185]

The Bsmoc derivative is formed from the chloroformate or the A -hydroxy-succinimide ester. It is cleaved rapidly by a Michael addition with tris(2-aminoethyl)amine at a rate that leaves Fmoc derivatives intact. More hindered bases, such as A -methylcyclohexylamine or diisopropylamine, do not react with the Bsmoc group, but do cleave the Fmoc group, illustrating the importance of steric effects in additions to Michael acceptors. [Pg.510]

Biogenic amines. A general term usually used to describe endogenous amine-containing compounds such as dopamine, 5-hydroxy-tryptamine, and norepinephrine that function as neurotransmitters. [Pg.450]

Some workers avoid delay. Pai)adium-on-carbon was used effectively for the reductive amination of ethyl 2-oxo-4-phenyl butanoate with L-alanyl-L-proline in a synthesis of the antihyperlensive, enalapril maleate. SchifTs base formation and reduction were carried out in a single step as Schiff bases of a-amino acids and esters are known to be susceptible to racemization. To a solution of 4,54 g ethyl 2-oxO 4-phenylbutanoate and 1.86 g L-alanyl-L-proline was added 16 g 4A molecular sieve and 1.0 g 10% Pd-on-C The mixture was hydrogenated for 15 hr at room temperature and 40 psig H2. Excess a-keto ester was required as reduction to the a-hydroxy ester was a serious side reaction. The yield was 77% with a diastereomeric ratio of 62 38 (SSS RSS)((55). [Pg.85]

Two reactions for the production of L-phenylalanine that can be performed particularly well in an enzyme membrane reactor (EMR) are shown in reaction 5 and 6. The recently discovered enzyme phenylalanine dehydrogenase plays an important role. As can be seen, the reactions are coenzyme dependent and the production of L-phenylalanine is by reductive animation of phenylpyruvic add. Electrons can be transported from formic add to phenylpyruvic add so that two substrates have to be used formic add and an a-keto add phenylpyruvic add (reaction 5). Also electrons can be transported from an a-hydroxy add to form phenylpyruvic add which can be aminated so that only one substrate has to be used a-hydroxy acid phenyllactic acid (reaction 6). [Pg.265]

On the other hand, there is at least one case of an aromatic amine without a hydroxy group in the 2-position, namely 1-aminophenazine (2.29) which, after the initial diazotization, is oxidized within minutes by air or additional nitrous acid to the quinone diazide 2.31 (Olson, 1977). [Pg.27]

Compounds which correspond to 1,2-quinone diazides can also be obtained by diazotization of aromatic and nonaromatic heterocyclic amines with a hydroxy group in the ortho position. Examples include 3,4-quinolinequinone-3-diazide (2.35, Sus et al., 1953 Sus and Moller, 1955) and 3-diazochromane-2,4-dione (2.36, Arndt et al., 1951). Syntheses of more complex heterocyclic quinone diazides have been tabulated by Ershov et al. (1981, p. 105). More recent publications are cited in a paper by Tisler s group (Klotzer et al., 1984). [Pg.29]

The basic principle of all diazotizations of aromatic amines with a hydroxy- or a sulfonamido group in the 4-position relative to the amino group involves a deprotonation of the OH or NH group, respectively, after diazotization of the amino group. There is also a case of a deprotonation of a CH group in the 4-position of an aniline derivative, namely in the diazotization of 4-aminophenylmalononitrile (2.41) which, by the sequence of steps shown in Scheme 2-23, yields 3-diazo-6-dicyanomethylene-1,4-cyclohexadienone (2.42), as found by Hartzler (1964). This product can also be represented by a zwitterionic carbanion-diazonium mesomeric structure. [Pg.30]

Lactame ergeben mit Hydriden den Carbonsaure-amiden ahnliche Reduktionspro-dukte (s. S. 230). Der cyclischen Struktur entsprechend werden cyclische a-Hydroxy-amine und Amine, sowie unter Aufspaltung des Lactam-Ringes co-Amino-alde-hyde und [Pg.244]

Certain ketoximes can be converted to nitriles by the action of proton or Lewis acids. Among these are oximes of a-diketones (illustrated above), a-keto acids, a-dialkylamino ketones, a-hydroxy ketones, p-keto ethers, and similar compounds. These are fragmentation reactions, analogous to 17-25 and 17-26. For example, ot-dialkylamino ketoximes also give amines and aldehydes or ketones besides nitriles. [Pg.1349]

An alternative strategy, avoiding the danger of over-reaction with diax.omethane, is to make the diazonium salt, by diazotisation of a hydroxy amine (14), available from the original ketone (12) via epoxide (13),... [Pg.375]

The amination of aromatic hydroxy-N-heterocycles is a standard reaction in medicinal and agricultural chemistry and has heen reviewed [36]. The hitherto commonly used two-step procedure for amination of hydroxy-N-heterocycles, starts with conversion into the chloro-N-heterocycles, e.g. by treatment of the hydroxy-N-heterocycle with POCI3, PCI5, or SOCI2, followed by reaction with the amine moiety. This methodology has several drawbacks however, for example ... [Pg.59]

Whereas condensation of a-hydroxy ketones such as benzoin and acetoin on heating with formamide [240] or ureas in acetic acid [239, 242] to form imidazoles such as 769 or 770 is a well known reaction, only two publications have yet discussed the amination of silylated enediols, prepared by Riihlmann-acyloin condensation of diesters [241], by sodium, in toluene, in the presence of TCS 14 [241, 242]. Thus the silylated acyloins 771 and higher homologues, derived from Riihl-... [Pg.129]


See other pages where A-Hydroxy amines is mentioned: [Pg.324]    [Pg.511]    [Pg.560]    [Pg.411]    [Pg.514]    [Pg.324]    [Pg.511]    [Pg.560]    [Pg.411]    [Pg.514]    [Pg.107]    [Pg.297]    [Pg.112]    [Pg.129]    [Pg.242]    [Pg.475]    [Pg.322]    [Pg.101]    [Pg.115]    [Pg.4]    [Pg.225]    [Pg.289]    [Pg.245]    [Pg.16]    [Pg.502]    [Pg.1411]    [Pg.1656]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Amination hydroxy

Carbonyl compounds, a-hydroxy via keto aminals

Hydroxy amines

© 2024 chempedia.info