Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides with amines

In addition to the homogeneous and heterogeneous TM catalysts discussed above, other catalysts/methods such as uano catalysts, carbon materials, enzymes, chiral catalysts and continuous flow techuiques have also been developed successfully and applied in /-alkylation reactions of amines/amides with alcohols. [Pg.334]

By treatment of an amide with sodium hypobromite or sodium hypochlorite solution (or with the halogen and alkali), the amine of one less carbon atom is produced, the net result being the elimination of the carbonyl group. An example is ... [Pg.413]

The trick used is to acylate the amine instead, since we can reduce the resulting amide with LiAIH, to give the product we want ... [Pg.75]

Transamidation. Polyacrylamide reacts with primary amines such as hydrazine [302-01-2], N2H4, (54) and hydroxjlamine [7803-49-8]. NH O, (55—57) to form substituted amides with loss of ammonia. [Pg.141]

Vinyl ethers are prepared in a solution process at 150—200°C with alkaH metal hydroxide catalysts (32—34), although a vapor-phase process has been reported (35). A wide variety of vinyl ethers are produced commercially. Vinyl acetate has been manufactured from acetic acid and acetylene in a vapor-phase process using zinc acetate catalyst (36,37), but ethylene is the currently preferred raw material. Vinyl derivatives of amines, amides, and mercaptans can be made similarly. A/-Vinyl-2-pyrroHdinone is a commercially important monomer prepared by vinylation of 2-pyrroHdinone using a base catalyst. [Pg.374]

Hydroperoxides have been obtained from the autoxidation of alkanes, aralkanes, alkenes, ketones, enols, hydrazones, aromatic amines, amides, ethers, acetals, alcohols, and organomineral compounds, eg, Grignard reagents (10,45). In autoxidations involving hydrazones, double-bond migration occurs with the formation of hydroperoxy—azo compounds via free-radical chain processes (10,59) (eq. 20). [Pg.105]

Apparently the alkoxy radical, R O , abstracts a hydrogen from the substrate, H, and the resulting radical, R" , is oxidized by Cu " (one-electron transfer) to form a carbonium ion that reacts with the carboxylate ion, RCO - The overall process is a chain reaction in which copper ion cycles between + 1 and +2 oxidation states. Suitable substrates include olefins, alcohols, mercaptans, ethers, dienes, sulfides, amines, amides, and various active methylene compounds (44). This reaction can also be used with tert-huty peroxycarbamates to introduce carbamoyloxy groups to these substrates (243). [Pg.131]

Poly(phenylene oxide)s undergo many substitution reactions (25). Reactions involving the aromatic rings and the methyl groups of DMPPO include bromination (26), displacement of the resultant bromine with phosphoms or amines (27), lithiation (28), and maleic anhydride grafting (29). Additional reactions at the open 3-position on the ring include nitration, alkylation (30), and amidation with isocyanates (31). [Pg.328]

Acylation. Aromatic amines react with acids, acid chlorides, anhydrides, and esters to form amides. In general, acid chlorides give the best yield of the pure product. The reaction with acetic, propionic, butanoic, or benzoic acid can be catalyzed with phosphoms oxychloride or trichloride. [Pg.229]

Primary organic amines react with triethylsilane in the presence of the appropriate potassium amides to produce organoaminotriethylsilanes with yields of 82-92%. [Pg.27]

Amides are formed with amines, often with strong base assistance (319,320). Occasionally Cp groups are lost (321—332) ... [Pg.160]

Appllca.tlons. MCA is used for the resolution of many classes of chiral dmgs. Polar compounds such as amines, amides, imides, esters, and ketones can be resolved (34). A phenyl or a cycloalkyl group near the chiral center seems to improve chiral selectivity. Nonpolar racemates have also been resolved, but charged or dissociating compounds are not retained on MCA. Mobile phases used with MCA columns include ethanol and methanol. [Pg.100]

Trimethylsilyl cyanide. This reagent readily silylates alcohols, phenols, and carboxylic acids, and more slowly, thiols and amines. Amides and related compounds do not react with this reagent. The reagent has the advantage that a volatile gas (HCN is highly toxic) is the only byproduct. [Pg.70]

The term aminoplastics has been coined to cover a range of resinous polymers produced by interaction of amines or amides with aldehydes. Of the various polymers of this type that have been produced there are two of current commercial importance in the field of plastics, the urea-formaldehyde and the melamine-formaldehyde resins. There has in the past also been some commercial interest in aniline-formaldehyde resins and in systems containing thiourea but today these are of little or no importance. Melamine-phenol-formaldehyde resins have also been introduced for use in moulding powders, and benzoguanamine-based resins are used for surface coating applications. [Pg.668]

The dipoles are shown interacting directly as would be expected. Nevertheless, it must be emphasized that behind the dipole-dipole interactions will be dispersive interactions from the random charge fluctuations that continuously take place on both molecules. In the example given above, the net molecular interaction will be a combination of both dispersive interactions from the fluctuating random charges and polar interactions from forces between the two dipoles. Examples of substances that contain permanent dipoles and can exhibit polar interactions with other molecules are alcohols, esters, ethers, amines, amides, nitriles, etc. [Pg.67]

Note Traces of ammonia left by the mobile phase should be completely removed from the chromatograms before the reagent is applied in order to avoid strong background coloration. The dipping solutions may also be applied as spray solutions. Secondary amines, amides, pyrimidines and purines do not react with the reagent [1]. In the case of benzodiazepines only those substances react which... [Pg.266]

The formation of vinylogous amides from primary amines and -dicarbonyl compounds gives rise to hydrolyzable amine derivatives with greatly decreased nucleophilicity of the nitrogen function. Thus these derivatives have found some use as protecting groups in peptide syntheses 617-619). [Pg.447]

This amide is readily prepared from the acid chloride (Pyr, rt, 1 h, 77-86% yield) or the acid (DCC, DMAP, CH2CI2, rt, 1 h, 88% yield). Treatment of the amide with camphorsulfonic acid forms an A-acylindole. The acid can be regenerated from the A-acylindole by Li0H/H202/THF/H20 or NaOH/MeOH. Alternatively, it can be transesterified with MeOH/TEA, converted to an amide, by heating with an amine or converted to an aldehyde by DIB AH (62-85% yield). ... [Pg.448]

The reaction of carboxylic acids, aldehydes or ketones with hydrazoic acid in the presence of a strong acid is known as the Schmidt reaction A common application is the conversion of a carboxylic acid 1 into an amine 2 with concomitant chain degradation by one carbon atom. The reaction of hydrazoic acid with a ketone 3 does not lead to chain degradation, but rather to formation of an amide 4 by formal insertion of an NH-group. [Pg.251]

Primary amines react with esters to yield amides RC02R + R"NH2... [Pg.750]

When an amine reacts with an acid chloride, an amide is formed. What would happen, though, if a diamine and a diacid chloride were allowed to react Each partner could form two amide bonds, linking more and more molecules together until a giant polyamide resulted. In the same way, reaction of a diol with a diacid would lead to a polyester. [Pg.818]

In contrast with amines, amides (RCONH ) are nonbasic. Amides don t undergo substantial protonation by aqueous acids, and they are poor nucleophiles. The main reason for this difference in basicity between amines and amides is that an amide is stabilized by delocalization of the nitrogen lone-pair electrons through orbital overlap with the carbonyl group. In resonance terms, amides are more stable and less reactive than amines because they are hybrids of two resonance forms. This amide resonance stabilization is lost when the nitrogen atom is protonated, so protonation is disfavored. Electrostatic potential maps show clearly the decreased electron density on the amide nitrogen. [Pg.922]

We ve already seen in Sections 20.7 and 21.7 how amines can be prepared by reduction of nitriles and amides with LiAlH4. The two-step sequence of 5 2 displacement with C followed by reduction thus converts an alkyl halide into a primary alkylamine having one more carbon atom. Amide reduction converts carboxylic acids and their derivatives into amines with the same number of carbon atoms. [Pg.927]

The carbanion 5, formed from V,V-diethyl-5-phenyl-3//-azepin-2-amine (4) with potassium amide in liquid ammonia, or with lithium 2,2,6,6-tetramethylpiperidide in tetrahydrofuran, is thiolated by dialkyl or diaryl disulfides to yield 3-(alkylsulfanyl)-3//-azepines, e.g. 6.38... [Pg.164]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]


See other pages where Amides with amines is mentioned: [Pg.336]    [Pg.297]    [Pg.298]    [Pg.302]    [Pg.361]    [Pg.336]    [Pg.297]    [Pg.298]    [Pg.302]    [Pg.361]    [Pg.27]    [Pg.28]    [Pg.276]    [Pg.375]    [Pg.127]    [Pg.260]    [Pg.431]    [Pg.322]    [Pg.427]    [Pg.291]    [Pg.122]    [Pg.1453]    [Pg.296]    [Pg.46]    [Pg.117]    [Pg.214]    [Pg.101]    [Pg.564]    [Pg.116]    [Pg.182]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Acid anhydride, amides from reaction with amines

Amidation with amines

Amidation with amines

Amidation, of isocyanic acid with bromoaniline and other aromatic amines

Amide , amines from reaction with

Amide bases reaction with amines

Amides amines

Amides reaction with amines

Amination/amidation

Amination/amidation Amines

Amine From amide, with homologation

Nitrous acid, reaction with amides primary amines

Nitrous acid, reaction with amides secondary amines

© 2024 chempedia.info