Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alumina Ammonia

The solvent for ammonia may have an important influence. In reduction of C,o unsaturated dinitriles to primary amines over ruthenium-on-alumina, ammonia-/-butanol proved the preferred system normal alcohols gave poor rates and secondary alcohols produced N-alkylated products 18). [Pg.96]

Alkyl acids > C2 Alumina Ammonia Amyl alcohol Benzoic anhydride Benzophenone... [Pg.1029]

Aluminas are commonly used as acid catalysts and as support material for catalysts. Here, we will investigate the influence of the alumina support on ammonia adsorption in the ammonia oxidation reaction over Pt/7-alumina. Ammonia appears to be involved in a phenomenon called adsorption assisted desorption (AAD). Adsorption assisted desorption (AAD) has become well-known in catalysis. We foimd that the rate of desorption of ammonia is increased by the partial ammonia pressure in the gas phase. [Pg.254]

Rhodium-alumina/ammonia Ring hydrogenation of N-heterocyclic carboyxlic acids... [Pg.39]

Prepared by heating ammonium mucate, or from butyne-l,4-diol and ammonia in the presence of an alumina catalyst. The pyrrole molecule is aromatic in character. It is not basic and the imino-hydrogen atom can be replaced by potassium. Many pyrrole derivatives occur naturally, e.g. proline, indican, haem and chlorophyll. [Pg.336]

Similar, very detailed studies were made by Ebert [112] on water adsorbed on alumina with similar conclusions. Water adsorbed on zeolites showed a dielectric constant of only 14-21, indicating greatly reduced mobility of the water dipoles [113]. Similar results were found for ammonia adsorbed in Vycor glass [114]. Klier and Zettlemoyer [114a] have reviewed a number of aspects of the molecular structure and dynamics of water at the surface of an inorganic material. [Pg.589]

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

Bare S R, Strongin D R and Somoqai G A 1986 Ammonia synthesis over iron single crystal catalysts—the effects of alumina and potassium J. Phys. Chem. 90 4726... [Pg.955]

Alkylthiazoles can be oxidized to nitriles in the presence of ammonia and a catalyst. For example, 4-cyanothiazole was prepared from 4-methylthiazole by a one-step vapor-phase process (94) involving reaction with a mixture of air, oxygen, and ammonia at 380 to 460°C. The catalyst was M0O3 and V Oj or M0O3, VjOj, and CoO on an alumina support. [Pg.531]

Tetrahydrofurfuryl alcohol reacts with ammonia to give a variety of nitrogen containing compounds depending on the conditions employed. Over a barium hydroxide-promoted skeletal nickel—aluminum catalyst, 2-tetrahydrofurfur5iarnine [4795-29-3] is produced (113—115). With paHadium on alumina catalyst in the vapor phase (250—300°C), pyridine [110-86-1] is the principal product (116—117) pyridine also is formed using Zn and Cr based catalysts (118,119). At low pressure and 200°C over a reduced nickel catalyst, piperidine is obtained in good yield (120,121). [Pg.82]

Reactions with Ammonia and Amines. Acetaldehyde readily adds ammonia to form acetaldehyde—ammonia. Diethyl amine [109-87-7] is obtained when acetaldehyde is added to a saturated aqueous or alcohoHc solution of ammonia and the mixture is heated to 50—75°C in the presence of a nickel catalyst and hydrogen at 1.2 MPa (12 atm). Pyridine [110-86-1] and pyridine derivatives are made from paraldehyde and aqueous ammonia in the presence of a catalyst at elevated temperatures (62) acetaldehyde may also be used but the yields of pyridine are generally lower than when paraldehyde is the starting material. The vapor-phase reaction of formaldehyde, acetaldehyde, and ammonia at 360°C over oxide catalyst was studied a 49% yield of pyridine and picolines was obtained using an activated siHca—alumina catalyst (63). Brown polymers result when acetaldehyde reacts with ammonia or amines at a pH of 6—7 and temperature of 3—25°C (64). Primary amines and acetaldehyde condense to give Schiff bases CH2CH=NR. The Schiff base reverts to the starting materials in the presence of acids. [Pg.50]

Reaction of formaldehyde, methanol, acetaldehyde, and ammonia over a siUca alumina catalyst at 500°C gives pyridine [110-86-1] and 3-picoline... [Pg.492]

The ethynylation reaction takes place at 10—40°C and 2 MPa (20 atm) and hquid ammonia is the solvent. The methylbutynol is converted into methylbutenol by selective hydrogenation and then is dehydrated over alumina at 250—300°C. Polymerization-grade isoprene is obtained. [Pg.468]

Alkali moderation of supported precious metal catalysts reduces secondary amine formation and generation of ammonia (18). Ammonia in the reaction medium inhibits Rh, but not Ru precious metal catalyst. More secondary amine results from use of more polar protic solvents, CH OH > C2H5OH > Lithium hydroxide is the most effective alkah promoter (19), reducing secondary amine formation and hydrogenolysis. The general order of catalyst procUvity toward secondary amine formation is Pt > Pd Ru > Rh (20). Rhodium s catalyst support contribution to secondary amine formation decreases ia the order carbon > alumina > barium carbonate > barium sulfate > calcium carbonate. [Pg.209]

Conditions cited for Rh on alumina hydrogenation of MDA are much less severe, 117 °C and 760 kPA (110 psi) (26). With 550 kPa (80 psi) ammonia partial pressure present ia the hydrogenation of twice-distilled MDA employing 2-propanol solvent at 121°C and 1.3 MPa (190 psi) total pressure, the supported Rh catalyst could be extensively reused (27). Medium pressure (3.9 MPa = 566 psi) and temperature (80°C) hydrogenation usiag iridium yields low trans trans isomer MDCHA (28). Improved selectivity to aUcychc diamine from MDA has been claimed (29) for alumina-supported iridium and rhodium by iatroduciag the tertiary amines l,4-diazabicyclo[2.2.2]octane [280-57-9] and quiaucHdine [100-76-5]. [Pg.209]

Trickle bed reaction of diol (12) using amine solvents (41) has been found effective for producing PDCHA, and heavy hydrocarbon codistiUation may be used to enhance diamine purification from contaminant monoamines (42). Continuous flow amination of the cycloaUphatic diol in a Hquid ammonia mixed feed gives >90% yields of cycloaUphatic diamine over reduced Co /Ni/Cu catalyst on phosphoric acid-treated alumina at 220°C with to yield a system pressure of 30 MPa (4350 psi) (43). [Pg.210]

Pyrrohdine [123-75-1] (tetrahydropyrrole) (19) is a water-soluble strong base with the usual properties of a secondary amine. An important synthesis of pyrrohdines is the reaction of reduced furans with excess amine or ammonia over an alumina catalyst in the vapor phase at 400°C. However, if labde substituents are present on the tetrahydrofurans, pyrroles may form (30). [Pg.356]

Usually best choice for desiccation of gases (<3% water) such as argon, helium, hydrogen, chlorine, hydrogen chloride, sulfur dioxide, ammonia, air, and chemical classes such as aliphatics, aromatics, halogenated compounds, oxygenated compounds (siUca gel, zeoHtes, activated alumina all alternatives some regenerable, some not). [Pg.458]

Butanol and isobutyl alcohol are aminated with ammonia over alumina at 300—350°C to give the corresponding mono-, di-, and tributylainines. [Pg.357]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

Carbon disulfide reacts with concentrated ammonia to give ammonium thiocyanate [1762-95-4] and ammonium trithiocarbonate [13453-08-2] in a reaction promoted by alumina catalysts ... [Pg.27]

The industrial catalysts for ammonia synthesis consist of far more than the catalyticaHy active iron (74). There are textural promoters, alumina and calcium oxide, that minimise sintering of the iron and a chemical promoter, potassium (about 1 wt % of the catalyst), and possibly present as K2O the potassium is beheved to be present on the iron surface and to donate electrons to the iron, increasing its activity for the dissociative adsorption of N2. The primary iron particles are about 30 nm in size, and the surface area is about 15 m /g. These catalysts last for years. [Pg.177]

When esters are passed with ammonia over a contact catalyst such as alumina or thoria at 400—500°C, nitriles are obtained via dehydration of the intermediate amides ... [Pg.388]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

Usually they are employed as porous pellets in a packed bed. Some exceptions are platinum for the oxidation of ammonia, which is in the form of several layers of fine-mesh wire gauze, and catalysts deposited on membranes. Pore surfaces can be several hundred mVg and pore diameters of the order of 100 A. The entire structure may be or catalytic material (silica or alumina, for instance, sometimes exert catalytic properties) or an active ingredient may be deposited on a porous refractory carrier as a thin film. In such cases the mass of expensive catalytic material, such as Pt or Pd, may be only a fraction of 1 percent. [Pg.2092]


See other pages where Alumina Ammonia is mentioned: [Pg.507]    [Pg.237]    [Pg.507]    [Pg.237]    [Pg.25]    [Pg.165]    [Pg.259]    [Pg.215]    [Pg.188]    [Pg.81]    [Pg.281]    [Pg.84]    [Pg.206]    [Pg.156]    [Pg.220]    [Pg.106]    [Pg.173]    [Pg.174]    [Pg.514]    [Pg.44]    [Pg.118]    [Pg.141]    [Pg.1541]    [Pg.1613]    [Pg.2097]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Ammonia adsorption on alumina

© 2024 chempedia.info