Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alternative catalyst oxide materials

Various other classes of catalysts have been investigated for NH3-SCR, in particular, metal-containing clays and layered materials [43 15] supported on active carbon [46] and micro- and meso-porous materials [31b,47,48], the latter also especially investigated for HC-SCR [25,3lb,48-53], However, while for NH3-SCR, either for stationary or mobile applications, the performances under practical conditions of alternative catalysts to V-W-oxides supported on titania do not justify their commercial use if not for special cases, the identification of a suitable catalyst, or combination of catalysts, for HC-SCR is still a matter of question. In general terms, supported noble metals are preferable for their low-temperature activity, centred typically 200°C. As commented before, low-temperature activity is a critical issue. However, supported noble metals have a quite limited temperature window of operation. [Pg.4]

We may thus conclude after this short overview on DeNO technologies that NH3-SCR using catalysts based on V-W-oxides supported on titania is a well-established technique for stationary sources of power plants and incinerators, while for other relevant sources of NO, such as nitric acid tail gases, where emissions are characterized from a lower temperature and the presence of large amounts of NOz, alternative catalysts based on transition metal containing microporous materials are possible. Also, for the combined DeNO -deSO, alternative catalysts would be necessary, because they should operate in the presence of large amounts of SO,.. Similarly, there is a need to develop new/improved catalysts for the elimination of NO in FCC emissions, again due to the different characteristics of the feed with respect to emissions from power plants. [Pg.6]

Normally, the kinetics of ORR and OER occurring at the cathode of fuel cells, including direct methanol fuel cells (DMFCs) is very slow. In order to speed up the ORR kinetics to reach a practical usable level in a fuel cell, ORR catalyst is needed at the air cathode. Platinum (Pt)-based materials are the most practical catalysts used in PEM technology. These Pt-based catalysts are too expensive to make fuel cells commercially viable, and hence extensive research over the past several decades has been focused on development of alternative catalysts. These alternative electrocatalysts include noble metals and allo37S, carbon materials, quinone and its derivatives, transition metal macrocyclic compounds, transition metal chalcogenides, transition metal carbides and transition metal oxides. In this chapter, we focus on both noble and nonnoble electrocatalysts being used in air cathodes and the kinetics and mechanisms O2 reduction/oxidation reaction (both ORR and OER), catal37zed by them. [Pg.111]

Additional studies have been conducted on various classes of alternative catalysts materials. Nazar and co-workers have recently reported that nanocrystalline C03O4 grown on reduced graphene oxide promoted a significant... [Pg.151]

Isobutyl alcohol [78-83-1] forms a substantial fraction of the butanols produced by higher alcohol synthesis over modified copper—zinc oxide-based catalysts. Conceivably, separation of this alcohol and dehydration affords an alternative route to isobutjiene [115-11 -7] for methyl /-butyl ether [1624-04-4] (MTBE) production. MTBE is a rapidly growing constituent of reformulated gasoline, but its growth is likely to be limited by available suppHes of isobutylene. Thus higher alcohol synthesis provides a process capable of supplying all of the raw materials required for manufacture of this key fuel oxygenate (24) (see Ethers). [Pg.165]

Nitrates. Iron(II) nitrate hexahydrate [14013-86-6], Fe(N03)2 6H20, is a green crystalline material prepared by dissolving iron in cold nitric acid that has a specific gravity of less than 1.034 g/cm. Use of denser, more concentrated acid leads to oxidation to iron(III). An alternative method of preparation is the reaction of iron(II) sulfate and barium or lead nitrate. The compound is very soluble in water. Crystallisation at temperatures below — 12°C affords an nonahydrate. Iron(II) nitrate is a useful reagent for the synthesis of other iron-containing compounds and is used as a catalyst for reduction reactions. [Pg.437]

The initiator usually constitutes less than 1% of the final product, and since starting the process with such a small amount of material in the reaction vessel may be difficult, it is often reacted with propylene oxide to produce a precursor compound, which may be stored until required [6]. The yield of poloxamer is essentially stoichiometric the lengths of the PO and EO blocks are determined by the amount of epoxide fed into the reactor at each stage. Upon completion of the reaction, the mixture is cooled and the alkaline catalyst neutralized. The neutral salt may then be removed or allowed to remain in the product, in which case it is present at a level of 0.5-1.0%. The catalyst may, alternatively, be removed by adsorption on acidic clays or with ion exchangers [7]. Exact maintenance of temperature, pressure, agitation speed, and other parameters are required if the products are to be reproducible, thus poloxamers from different suppliers may exhibit some difference in properties. [Pg.766]

Direct conversion of methane to ethane and ethylene (C2 hydrocarbons) has a large implication towards the utilization of natural gas in the gas-based petrochemical and liquid fuels industries [ 1 ]. CO2 OCM process provides an alternative route to produce useful chemicals and materials where the process utilizes CO2 as the feedstock in an environmentally-benefiting chemical process. Carbon dioxide rather than oxygen seems to be an alternative oxidant as methyl radicals are induced in the presence of oxygen. Basicity, reducibility, and ability of catalyst to form oxygen vacancies are some of the physico-chemical criteria that are essential in designing a suitable catalyst for the CO2 OCM process [2]. The synergism between catalyst reducibility and basicity was reported to play an important role in the activation of the carbon dioxide and methane reaction [2]. [Pg.213]

Wastewaters containing chlorinated hydrocarbons (CHCs) are very toxic for aquatic system even at concentrations of ppm levels [1] thus, appropriate treatment technologies are required for processing them to non-toxic or more biologically amenable intermediates. Catalytic wet oxidation can offer an alternative approach to remove a variety of such toxic organic materials in wet streams. Numerous supported catalysts have been applied for the removal of aqueous organic wastes via heterogeneous wet catalysis [1,2]. [Pg.305]

The activity and stability of catalysts for methane-carbon dioxide reforming depend subtly upon the support and the active metal. Methane decomposes to carbon and hydrogen, forming carbon on the oxide support and the metal. Carbon on the metal is reactive and can be oxidized to CO by oxygen from dissociatively adsorbed COj. For noble metals this reaction is fast, leading to low coke accumulation on the metal particles The rate of carbon formation on the support is proportional to the concentration of Lewis acid sites. This carbon is non reactive and may cover the Pt particles causing catalyst deactivation. Hence, the combination of Pt with a support low in acid sites, such as ZrO, is well suited for long term stable operation. For non-noble metals such as Ni, the rate of CH4 dissociation exceeds the rate of oxidation drastically and carbon forms rapidly on the metal in the form of filaments. The rate of carbon filament formation is proportional to the particle size of Ni Below a critical Ni particle size (d<2 nm), formation of carbon slowed down dramatically Well dispersed Ni supported on ZrO is thus a viable alternative to the noble metal based materials. [Pg.463]

M-NHC catalysts in this area. Metal catalysed carbonylation also provides an alternative synthetic ronte to the prodnction of materials that traditionally reqnire highly toxic precnrsors, like phosgene. This section discnsses carbonylation of aryl hahdes, oxidative carbonylation of phenolic and amino componnds, carbonylation of aryl diazoninm ions, alcohol carbonylation, carbonylative amidation, and copolymerisation of ethylene and CO. [Pg.226]

An alternative route to anthraquinone, which involves Friedel-Crafts acylation, is illustrated in Scheme 4.3. This route uses benzene and phthalic anhydride as starting materials. In the presence of aluminium(m) chloride, a Lewis acid catalyst, these compounds react to form 2-benzoyl-benzene-1-carboxylic acid, 74. The intermediate 74 is then heated with concentrated sulfuric acid under which conditions cyclisation to anthraquinone 52 takes place. Both stages of this reaction sequence involve Friedel-Crafts acylation reactions. In the first stage the reaction is inter-molecular, while the second step in which cyclisation takes place, involves an intramolecular reaction. In contrast to the oxidation route, the Friedel-Crafts route offers considerable versatility. A range of substituted... [Pg.84]

Oxidation is a widely used procedure in carbohydrate chemistry, mainly to access sugars that contain a carbonyl function to serve as valuable intermediates for a variety of derivatizations. Many procedures have been developed, employing either chemical or biochemical methodologies.14 148 While most of these methodologies rely on homogeneous catalysis, the use of heterogeneous catalysts has proved to be a feasible alternative.123c However, the utilization of catalysts based on silicon porous materials for the oxidation of carbohydrates is still a field to be further explored. [Pg.74]

Capture of Active Catalyst Using Solid Acidic Support with H2 Elution. The limit on the practical life of a catalyst solution may be determined by several factors including the presence of poisons or inhibitors, the buildup of less soluble materials such as the oxidation products of organophosphorus ligands, or an increase in the concentration of heavy aldehyde condensation products in the catalyst solution. In the latter case, there may be substantial amounts of active catalyst, but it is in a solvent that is unsuitable. Alternately, active rhodium catalyst may have been carried over with product. Technology has been disclosed [39] that permits the isolation of an active metal hydride catalyst. Steps include ... [Pg.34]


See other pages where Alternative catalyst oxide materials is mentioned: [Pg.191]    [Pg.246]    [Pg.4]    [Pg.191]    [Pg.681]    [Pg.150]    [Pg.495]    [Pg.115]    [Pg.327]    [Pg.277]    [Pg.295]    [Pg.402]    [Pg.66]    [Pg.181]    [Pg.271]    [Pg.310]    [Pg.84]    [Pg.434]    [Pg.11]    [Pg.342]    [Pg.398]    [Pg.419]    [Pg.44]    [Pg.126]    [Pg.147]    [Pg.269]    [Pg.274]    [Pg.474]    [Pg.94]    [Pg.213]    [Pg.76]    [Pg.566]    [Pg.3]    [Pg.106]    [Pg.293]    [Pg.279]    [Pg.421]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 , Pg.289 , Pg.290 , Pg.291 , Pg.292 , Pg.293 , Pg.294 , Pg.295 , Pg.296 , Pg.297 , Pg.298 , Pg.299 ]




SEARCH



ALTERNATIVE CATALYSTS

Alternative materials

Catalyst materials

Oxidation materials

Oxide materials

Oxidized material

Oxidizing material

© 2024 chempedia.info