Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decarboxylative allylation

Remote decarboxylative allylation has been developed as a simple method for the y-allylation of coumarins. Mechanistic studies suggested that the remote allylation is made possible by a carboxylate-assisted deprotonation to generate the nucleophile before decarboxylation. After allylation, decarboxylation of the carboxylic acid is catalysed by Pd(0), contrary to more commonly observed Pd(II)-catalysed decarboxylations. [Pg.365]

As mentioned earlier, we reported the first allylic decarboxylation reaction of pentadienyl esters. We considered that the pentadienyl group was assisting with reactivity, so it was believed that the palladium-catalyzed decarboxylation of diester 73 would be as successful as the previous example. Interestingly, when saturated diester 73 was subjected to the same... [Pg.110]

Svndiesis (Crombie, J. Chem. Soc. (C), 1969, 1016). The acetylenic bromide corresponding to allyl bromide is called propargyl bromide and is reactive and readily available. We shall need to protect the ketone before we make the acetylene anion. It turns out tliat protection and decarboxylation can be done in one step. [Pg.20]

Wylation under neutral conditions. Reactions which proceed under neutral conditions are highly desirable, Allylation with allylic acetates and phosphates is carried out under basic conditions. Almost no reaction of these allylic Compounds takes place in the absence of bases. The useful allylation under neutral conditions is possible with some allylic compounds. Among them, allylic carbonates 218 are the most reactive and their reactions proceed under neutral conditions[13,14,134], In the mechanism shown, the oxidative addition of the allyl carbonates 218 is followed by decarboxylation as an irreversible process to afford the 7r-allylpalladium alkoxide 219. and the generated alkoxide is sufficiently basic to pick up a proton from active methylene compounds, yielding 220. This in situ formation of the alkoxide. which is a... [Pg.319]

The formation of 1-and 2-aIkenes can be understood by the following mechanism. In the presence of formate anion, the 7r-allylpalladium complex 572 is converted into the 7r-allylpalladium formate 573. The most interesting feature is the attack of the hydride from formate to the more substituted side of the (T-allylic system by the cyclic mechanism shown by 574 to form the 1-alkene 575[367]. The decarboxylation and hydride transfer should be a concerted... [Pg.367]

Geranyl acetoacetate (685) is converted into geranylacetone (686). On the other hand, a mixture of E- and Z-isomers of 688 is obtained from neryl acetoacetate (687). The decarboxylation and allylation of the allyl malonate or cyanoacetate 689 affords the o-allylated acetate or nitriie[447]. The trifluoromethyl ketone 691 is prepared from cinnamyl 4.4,4-trifluoroacetoace-tate (690)[448],... [Pg.386]

The decarboxylation-allylation of allyl enol carbonates proceeds smoothly[450]. The isomeric enol carbonates 699 and 701 of the enone 698 undergo regiospecific allylation, giving the regioisomers 700 and 702 selectively. [Pg.387]

The allyl cyanoacetate 731 can be converted into an a, /3-unsaturated nitrile by the decarboxylation-elimination reaction[460], but allyl malonates cannot be converted into unsaturated esters, the protonation and allylation products being formed instead. [Pg.391]

The decarboxylation of allyl /3-keto carboxylates generates 7r-allylpalladium enolates. Aldol condensation and Michael addition are typical reactions for metal enolates. Actually Pd enolates undergo intramolecular aldol condensation and Michael addition. When an aldehyde group is present in the allyl fi-keto ester 738, intramolecular aldol condensation takes place yielding the cyclic aldol 739 as a main product[463]. At the same time, the diketone 740 is formed as a minor product by /3-eIimination. This is Pd-catalyzed aldol condensation under neutral conditions. The reaction proceeds even in the presence of water, showing that the Pd enolate is not decomposed with water. The spiro-aldol 742 is obtained from 741. Allyl acetates with other EWGs such as allyl malonate, cyanoacetate 743, and sulfonylacetate undergo similar aldol-type cycliza-tions[464]. [Pg.392]

Hydrogenolysis of the diallyl alkylmalonate 757 with formic acid in boiling dioxane affords the monocarboxylic acid 758. Allyl ethyl malonates are converted into ethyl carboxylates[471]. The malonic allyl ester TV-allylimide 759 undergoes smooth deallylation in refluxing dioxane to give the simple imide 760(472]. The allyl cyanoacetate 761 undergoes smooth decarboxylation to give... [Pg.394]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

When ethyl trifluoroacetylacetate is treated with an allylic alkoxide, tran-sesterification is followed by ester enolate Claisen rearrangement m a process that on decarboxylation yields stereospecifically the tnfluoromethyl ketone product [22] (equation 19)... [Pg.626]

Dibenzo[/>,rf]thiopyrylium tetrafluoroborate (1) reacts with ethyl lithiodiazoacetate at — 120 C to form the diazo compound 2 which, with dimeric ( 3-allyl)chloropalIadium at 20 C, gives ethyl dibenzo[ ,d]thiepin-6-carboxylate (3), via a carbene intermediate.5 Compound 3 is quite stable the ethoxycarbonyl group can be hydrolyzed by alkali and decarboxylated to give the corresponding parent compound 4 in good yield. [Pg.84]

Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiQ as Lewis acid (Eq. 21) [286]. Using these latent A -acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-l-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of p-lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. 0-Benzoylated a-hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35). [Pg.124]

The various carbenium ions /erf-alkyl, bridgehead-, norbornyl-, allyl-, benzyl- or cyclopropylcarbinyl-cations, which are assumed to be intermediates in these decarboxylations are compiled in ref. [293]. [Pg.124]

A convenient way of obtaining secondary amines without contamination by primary or tertiary amines involves treatment of alkyl halides with the sodium or calcium salt of cyanamide NH2—CN to give disubstituted cyanamides, which are then hydrolyzed and decarboxylated to secondary amines. Good yields are obtained when the reaction is carried out under phase-transfer conditions. The R group may be primary, secondary, allylic, or benzylic. 1, co-Dihalides give cyclic secondary amines. [Pg.501]

Irradiation of 3,4-diarylsydnones 329 possessing an allyl or alkenyloxy substituent provided fused dihydropyrazoles 331 presumably via decarboxylation of sydnones 329 to nitrilimine 330 and the latter s INIC reaction (Eq. 38) [94]. [Pg.46]

Scheme 23 Decarboxylative allylic elherification (1 = linear product, b = branched product) [69]... Scheme 23 Decarboxylative allylic elherification (1 = linear product, b = branched product) [69]...
Co-adsorption experiments show a complex role of the nature and concentration of chemisorbed ammonia species. Ammonia is not only one of the reactants for the synthesis of acrylonitrile, but also reaction with Br()>nsted sites inhibits their reactivity. In particular, IR experiments show that two pathways of reaction are possible from chemisorbed propylene (i) to acetone via isopropoxylate intermediate or (ii) to acrolein via allyl alcoholate intermediate. The first reaction occurs preferentially at lower temperatures and in the presence of hydroxyl groups. When their reactivity is blocked by the faster reaction with ammonia, the second pathway of reaction becomes preferential. The first pathway of reaction is responsible for a degradative pathway, because acetone further transform to an acetate species with carbon chain breakage. Ammonia as NH4 reacts faster with acrylate species (formed by transformation of the acrolein intermediate) to give an acrylamide intermediate. At higher temperatures the amide may be transformed to acrylonitrile, but when Brreform ammonia and free, weakly bonded, acrylic acid. The latter easily decarboxylate forming carbon oxides. [Pg.285]


See other pages where Decarboxylative allylation is mentioned: [Pg.106]    [Pg.106]    [Pg.320]    [Pg.335]    [Pg.361]    [Pg.372]    [Pg.375]    [Pg.385]    [Pg.387]    [Pg.388]    [Pg.388]    [Pg.389]    [Pg.391]    [Pg.393]    [Pg.908]    [Pg.908]    [Pg.908]    [Pg.908]    [Pg.92]    [Pg.334]    [Pg.126]    [Pg.342]    [Pg.362]    [Pg.55]    [Pg.133]    [Pg.944]    [Pg.1691]    [Pg.141]   


SEARCH



Allyl enol carbonates, decarboxylation

Allyl enol carbonates, decarboxylation reactions

Allylation decarboxylation

Allylation decarboxylation

Allylation with Decarboxylation

Allylation, decarboxylative metal catalyzed

Allylic acetates, decarboxylative eliminations

Decarboxylation allyl /1-keto esters

Decarboxylation and Allylation

Decarboxylation, allylic acetates

Decarboxylation, allylic acetates reaction

Decarboxylative Allylic Amidation

Decarboxylative Asymmetric Allylic Allylation (DAAA)

Decarboxylative allylic alkylation

Palladium catalysis decarboxylative allylation

© 2024 chempedia.info