Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decarboxylation and Allylation

The reductive coupling of the 7r-allylpalladium enolates 679 gives the allylated ketones. This reaction is also possible thermally, as the Carroll reaction, which [Pg.385]

Geranyl acetoacetate (685) is converted into geranylacetone (686). On the other hand, a mixture of E- and Z-isomers of 688 is obtained from neryl acetoacetate (687). The decarboxylation and allylation of the allyl malonate or cyanoacetate 689 affords the o-allylated acetate or nitriie[447]. The trifluoromethyl ketone 691 is prepared from cinnamyl 4.4,4-trifluoroacetoace-tate (690)[448], [Pg.386]

The decarboxylation-allylation of allyl enol carbonates proceeds smoothly[450]. The isomeric enol carbonates 699 and 701 of the enone 698 undergo regiospecific allylation, giving the regioisomers 700 and 702 selectively. [Pg.387]


The formation of 1-and 2-aIkenes can be understood by the following mechanism. In the presence of formate anion, the 7r-allylpalladium complex 572 is converted into the 7r-allylpalladium formate 573. The most interesting feature is the attack of the hydride from formate to the more substituted side of the (T-allylic system by the cyclic mechanism shown by 574 to form the 1-alkene 575[367]. The decarboxylation and hydride transfer should be a concerted... [Pg.367]

The allyl cyanoacetate 731 can be converted into an a, /3-unsaturated nitrile by the decarboxylation-elimination reaction[460], but allyl malonates cannot be converted into unsaturated esters, the protonation and allylation products being formed instead. [Pg.391]

The decarboxylation of allyl /3-keto carboxylates generates 7r-allylpalladium enolates. Aldol condensation and Michael addition are typical reactions for metal enolates. Actually Pd enolates undergo intramolecular aldol condensation and Michael addition. When an aldehyde group is present in the allyl fi-keto ester 738, intramolecular aldol condensation takes place yielding the cyclic aldol 739 as a main product[463]. At the same time, the diketone 740 is formed as a minor product by /3-eIimination. This is Pd-catalyzed aldol condensation under neutral conditions. The reaction proceeds even in the presence of water, showing that the Pd enolate is not decomposed with water. The spiro-aldol 742 is obtained from 741. Allyl acetates with other EWGs such as allyl malonate, cyanoacetate 743, and sulfonylacetate undergo similar aldol-type cycliza-tions[464]. [Pg.392]

The complex also undergoes a variety of addition reactions with reagents such as methyl iodide, hydrochloric acid, benzoyl chloride, and allyl chloride.8 In a reaction similar to that of the decarboxylation of aldehydes, the complex will abstract CS from carbon disulfide to give the irans-thiocarbonyl complex rans-RhClCS[P(C8H6)5]2.9... [Pg.71]

By 1984, the palladium-catalyzed aUyhc alkylation reaction had been extensively studied as a method for carbon-carbon bond formation, whereas the synthetic utility of other metal catalysts was largely unexplored [1, 2]. Hence, prior to this period rhodium s abihty to catalyze this transformation was cited in only a single reference, which described it as being poor by comparison with the analogous palladium-catalyzed version [6]. Nonetheless, Yamamoto and Tsuji independently described the first rhodium-catalyzed decarboxylation of allylic phenyl carbonates and the intramolecular decarboxylative aUylation of aUyl y9-keto carboxylates respectively [7, 8]. These findings undoubtedly laid the groundwork for Tsuji s seminal work on the regiospecific rho-... [Pg.191]

Metabolism is the major route of elimination of THC from the body as little is excreted unchanged. In humans, over 20 metabolites have been identified in urine and feces 26 Metabolism in humans involves allylic oxidation, epoxidation, aliphatic oxidation, decarboxylation, and conjugation. The two monohydroxy metabolites (Figure 4.7) 11-hydroxy (OH)-THC and 8-beta-hydroxy THC are active, with the former exhibiting similar activity and disposition to THC, while the latter is less potent. Plasma concentrations of 11-OH-THC are typically <10% of the THC concentration after marijuana smoking. Two additional hydroxy compounds have been identified, namely, 8-alpha-hydroxy-THC and 8,11-dihydroxy-THC, and are believed to be devoid of THC-like activity. Oxidation of 11-OH-THC produces the inactive metabolite, ll-nor-9-carboxy-THC, or THC-COOH. This metabolite may be conjugated with glucuronic acid and is excreted in substantial amounts in the urine. [Pg.47]

Ketoacids126,127 form the same intermediates as the allyl 3-ketoesters by nucleophilic addition of the carboxylate to a n-allylpalladium complex. Decarboxylation generates the allylpalladium enolate, which again yields Pd° and allylated ketone. Enol silyl ethers have also been employed with allyl arsenites93 to provide allylated ketones. [Pg.592]

On the other hand, cation formation by decarboxylation of an acyloxonium cation RC02+ is supported by the partial stereospecificity observed in the electrolysis of cis- and trans-bicyclo [3.1.0] hexane-3-carboxylic acid 2°5 and the electrocyclic ring opening in the anodic oxidation of 3-methyl-2-phenylcyclopro-panecarboxylate (22, 23) to cyclopropyl methyl ether (24, 25) and allylic ethers (26, 27) (Eq. (97)) 206). [Pg.64]

Such interference falls into two classes competitive substrates and substances that either aaivate or inhibit the enzyme. With some enzymes, such as urease, the only substrate that reacts at reasonable rate is urease hence, the urease-coated electrode is specific for use (59, 165). Likewise, uricase acts almost specifically on uric acid (167), and aspartase on aspartic acid (8, 168). Others, such as penicillinase and amino oxidase, are less specific (63,169,170). Alcohol oxidase responds to methanol, ethanol, and allyl alcohol (171, 172). Hence, in using electrodes of these enzymes, the analyte must be separated if two or more are present (172). Assaying L-amino acids by using either the decarboxylative or the deaminating enzymes, each of which acts specifically on a different amino... [Pg.88]


See other pages where Decarboxylation and Allylation is mentioned: [Pg.393]    [Pg.484]    [Pg.152]    [Pg.393]    [Pg.484]    [Pg.152]    [Pg.385]    [Pg.389]    [Pg.391]    [Pg.908]    [Pg.908]    [Pg.908]    [Pg.908]    [Pg.55]    [Pg.664]    [Pg.59]    [Pg.425]    [Pg.197]    [Pg.480]    [Pg.482]    [Pg.483]    [Pg.1019]    [Pg.915]    [Pg.915]    [Pg.538]    [Pg.119]    [Pg.139]    [Pg.150]    [Pg.152]    [Pg.154]    [Pg.155]    [Pg.155]    [Pg.47]    [Pg.399]    [Pg.266]    [Pg.713]    [Pg.299]   


SEARCH



Allylation decarboxylation

Allylation, decarboxylative

And decarboxylation

And decarboxylative

© 2024 chempedia.info