Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol cyclications

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

The decarboxylation of allyl /3-keto carboxylates generates 7r-allylpalladium enolates. Aldol condensation and Michael addition are typical reactions for metal enolates. Actually Pd enolates undergo intramolecular aldol condensation and Michael addition. When an aldehyde group is present in the allyl fi-keto ester 738, intramolecular aldol condensation takes place yielding the cyclic aldol 739 as a main product[463]. At the same time, the diketone 740 is formed as a minor product by /3-eIimination. This is Pd-catalyzed aldol condensation under neutral conditions. The reaction proceeds even in the presence of water, showing that the Pd enolate is not decomposed with water. The spiro-aldol 742 is obtained from 741. Allyl acetates with other EWGs such as allyl malonate, cyanoacetate 743, and sulfonylacetate undergo similar aldol-type cycliza-tions[464]. [Pg.392]

The 3.8-nonadienoate 91, obtained by dimerization-carbonylation, has been converted into several natural products. The synthesis of brevicomin is described in Chapter 3, Section 2.3. Another royal jelly acid [2-decenedioic acid (149)] was prepared by cobalt carbonyl-catalyzed carbonylation of the terminal double bond, followed by isomerization of the double bond to the conjugated position to afford 149[122], Hexadecane-2,15-dione (150) can be prepared by Pd-catalyzed oxidation of the terminal double bond, hydrogenation of the internal double bond, and coupling by Kolbe electrolysis. Aldol condensation mediated by an organoaluminum reagent gave the unsaturated cyclic ketone 151 in 65% yield. Finally, the reduction of 151 afforded muscone (152)[123]. n-Octanol is produced commercially as described beforc[32]. [Pg.445]

CLAISEN - GEUTER - OIECKMANN Ester condensation Synthesis ot open chain or cyclic p keloesters by aldol type condensation... [Pg.65]

The fundamental mechanistic concept by which the stereochemical course of the aldol addition under conditions of kinetic control has been analyzed involves a cyclic transition state in which both the carbonyl and enolate oxygens are coordinated to a Lewis... [Pg.467]

The aldol reactions of enamines may be formally considered to proceed via acyclic amino aldehyde or amino ketone forms, in spite of the fact that the cyclic enamine forms can also take part in aldol reactions. [Pg.295]

The reaction of a cyclic ketone—e.g. cyclohexanone 1—with methyl vinyl ketone 2 resulting in a ring closure to yield a bicyclic a ,/3-unsaturated ketone 4, is called the Robinson annulation This reaction has found wide application in the synthesis of terpenes, and especially of steroids. Mechanistically the Robinson annulation consists of two consecutive reactions, a Michael addition followed by an Aldol reaction. Initially, upon treatment with a base, the cyclic ketone 1 is deprotonated to give an enolate, which undergoes a conjugate addition to the methyl vinyl ketone, i.e. a Michael addition, to give a 1,5-diketone 3 ... [Pg.240]

Jager and coworkers have used the TBAF catalyzed-stereoselective niho-aldol reaction for the synthesis of cyclic amino alcohols such as iminopolyols, imino sugars, and cyclic amino acids. They are important classes of compounds and have the potential utility as anh-diabetic. [Pg.63]

Ring expansion of cyclic ketones via nitro-aldol reaction of a-nitrosiilfides followed by treatment wiih AlCU has been reported fEq 7 35 ... [Pg.191]

Aldol condensation Cyclic ketone Weak base 51... [Pg.776]

The aldol reactions we ve seen thus far have all been intermolecular, meaning that they have taken place between two different molecules. When certain r/zcar-bonyl compounds are treated with base, however, an mtramolecular aldol reaction can occur, leading to the formation of a cyclic product. For example, base treatment of a 1,4-diketone such as 2,5-hexanedione yields a cyclopcntenone... [Pg.886]

Intramolecular Claisen condensations can be carried out with diesters, just as intramolecular aldol condensations can be carried out with diketones (Section 23.6). Called the Dieckmann cyclization, the reaction works best on 1.6-diesters and 1,7-diesters. Intramolecular Claisen cyclization of a 1,6-diester gives a five-membered cyclic /3-keto ester, and cyclization of a 1,7-diester gives a six-membered cyclic /3-keto ester. [Pg.892]

It is noteworthy that reaction diastereoselectivity closely parallels the isomeric purity of the allyiboronates, thus underscoring the requirement that the method of reagent synthesis be highly stereoselective. The data presented in Table 1 also provide strong evidence for the involvement of chair-like, cyclic transition states, analogous to the transition states previously invoked for aldol reactions46. [Pg.278]

This type of yvn-seleclivc aldol addition has been applied in the synthesis of the unusual L-threonine based amino acid, (2,S, 3/ ,6F)-3-hydroxy-4-methyl-2-methylamino-6-octenoic acid, of cyclosporine104, of the cyclic hexapeptide echinocandin105, and of the antibiotic ionomycin97. [Pg.501]

The amide 33l06b and the cyclic sulfamide 34106c, both C2-symmetric, and the borneol derived amide 3510bd provide further ways to xyn-aldols with remarkable induced diastereoselectivity. [Pg.504]

The diastereoselectivity of the copper enolate 2b may be rationalized by suggesting that the chair-like cyclic transition state J is preferred which leads to the major diastereomer 4. The usual antiperiplanar enolate geometry and equatorial disposition of the aldehyde substituent are incorporated into this model. Possible transition states consistent with the stereochemistries of the observed minor aldol products are also illustrated. [Pg.546]

The chiral cyclic cobalt enolate 2 reacts with acetone to produce the aldol adduct 3 which arises from attack of the electrophile from the least hindered side of the enolate, i.e., away from the phosphane13. None of the other possible diastereomers was detected. [Pg.559]

The major aldol product 4 is consistent with the intermediacy of a Zimmerman-Traxler cyclic transition state such as A. Diastereoselectivities are moderate for aldehydes which are less sterically demanding than 2,2-dimethylpropanal. [Pg.559]

The Lewis acid mediated addition of silyl enol ethers or silylketcne acetals to oc-alkoxyaldehydcs is the most versatile and reliable method of providing chelation control in aldol-type additions3. The stereochemical outcome is as predicted by Cram s cyclic model11 ... [Pg.566]

When the cnolate of an enone is brought into reaction with an enone, usually a carbocyclic system is prepared by two consecutive Michael additions (M1MIRC reactions). Due to the lower temperatures employed and the absence of diene polymerization these reactions are useful alternatives for Diels-Alder reactions and proceed in general with high diastereoselectivities. When neither enolate nor enone is cyclic a monocyclic system is formed 338 which can be converted into a bicyclic system when the Michael addition is followed by an aldol reaction339. When, however, the enolate is cyclic a bicyclic or a tricyclic system is formed340 341. [Pg.997]

Demailly and coworkers195 found that the asymmetric induction increased markedly when optically active methyl pyridyl sulfoxide was treated with an aldehyde. They also synthesized (S)-chroman-2-carboxylaldehyde 152, which is the cyclic ring part of a-tocopherol, by aldol-type condensation of the optically active lithium salt of a,/3-unsaturated sulfoxide. Although the diastereomeric ratio of allylic alcohol 151 formed from lithium salt 149 and 150 was not determined, the reaction of 149 with salicylaldehyde gave the diastereomeric alcohol in a ratio of 28 72196. [Pg.616]

Williams56 argues that these aldol-type condensations do not proceed via cyclic, chairlike six-membered transition states, in contrast to previous arguments to the contrary58., ... [Pg.831]

An analogous reaction has been carried out using malononitrile and different products derived by a Cross-Aldol reaction of acetone (Scheme 32). The cyclic furanimide 91 was then reacted under microwave irradiation in the presence of NaOEt with a second molecule of malononitrile to give the furanone 92 [66]. The NLO chromophore 93 was prepared using this procedure. [Pg.231]

NHC-promoted enolate formation from an enal, followed by a desymmetrising aldol event to generate P-lactones and loss of CO, has been exploited by Scheidt and co-workers to generate functionalised cyclopentenes 240 in high ee from enal substrates 238 (Scheme 12.52) [94]. Interestingly, the use of alkyl ketones in this reaction manifold allows the isolation of the p-lactone intermediates with acyclic diketones, P-lactones 239 are formed with the R group anti- to the tertiary alkox-ide, while with cyclic diketones the P-lactone products have the R group with a syn relationship to the alkoxide [95]. [Pg.290]

Reaction progress kinetic analysis offers a reliable alternative method to assess the stability of the active catalyst concentration, again based on our concept of excess [e]. In contrast to our different excess experiments described above, now we carry out a set of experiments at the same value of excess [ej. We consider again the proline-mediated aldol reaction shown in Scheme 50.1. Under reaction conditions, the proline catalyst can undergo side reactions with aldehydes to form inactive cyclic species called oxazolidinones, effectively decreasing the active catalyst concentration. It has recently been shown that addition of small amounts of water to the reaction mixture can eliminate this catalyst deactivation. Reaction progress kinetic analysis of experiments carried out at the same excess [e] can be used to confirm the deactivation of proline in the absence of added water as well to demonstrate that the proline concentration remains constant when water is present. [Pg.452]

Aldol Reactions of Boron Enolates. The matter of increasing stereoselectivity in the addition step can be addressed by using other reactants. One important version of the aldol reaction involves the use of boron enolates.15 A cyclic TS similar to that for lithium enolates is involved, and the same relationship exists between enolate configuration and product stereochemistry. In general, the stereoselectivity is higher than for lithium enolates. The O-B bond distances are shorter than for lithium enolates, and this leads to a more compact structure for the TS and magnifies the steric interactions that control stereoselectivity. [Pg.71]


See other pages where Aldol cyclications is mentioned: [Pg.53]    [Pg.137]    [Pg.87]    [Pg.89]    [Pg.349]    [Pg.17]    [Pg.87]    [Pg.319]    [Pg.458]    [Pg.485]    [Pg.300]    [Pg.288]    [Pg.1037]    [Pg.1222]    [Pg.34]    [Pg.137]    [Pg.99]    [Pg.67]    [Pg.73]   
See also in sourсe #XX -- [ Pg.1064 ]




SEARCH



© 2024 chempedia.info