Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alloy wear resistant

German chemists Ida Tacke, Walter Nodack, and Otto Carl Berg Extremely rare useful in making metal alloys wear resistant, especially those used to make electrical contacts. [Pg.247]

Beryllium is added to copper to produce an alloy with greatly increased wear resistance it is used for current-carrying springs and non-sparking safety tools. It is also used as a neutron moderator and reflector in nuclear reactors. Much magnesium is used to prepare light nieial allo>s. other uses include the extraction of titanium (p. 370) and in the removal of oxygen and sulphur from steels calcium finds a similar use. [Pg.124]

Ruthenium is a hard, white metal and has four crystal modifications. It does not tarnish at room temperatures, but oxidizes explosively. It is attacked by halogens, hydroxides, etc. Ruthenium can be plated by electrodeposition or by thermal decomposition methods. The metal is one of the most effective hardeners for platinum and palladium, and is alloyed with these metals to make electrical contacts for severe wear resistance. A ruthenium-molybdenum alloy is said to be... [Pg.108]

The materials used in a total joint replacement ate designed to enable the joint to function normally. The artificial components ate generally composed of a metal piece that fits closely into bone tissue. The metals ate varied and include stainless steel or alloys of cobalt, chrome, and titanium. The plastic material used in implants is a polyethylene that is extremely durable and wear-resistant. Also, a bone cement, a methacrylate, is often used to anchor the artificial joint materials into the bone. Cementiess joint replacements have mote tecentiy been developed. In these replacements, the prosthesis and the bone ate made to fit together without the need for bone cement. The implants ate press-fit into the bone. [Pg.187]

The durabihty and versatility of steel are shown by its wide range of mechanical and physical properties. By the proper choice of carbon content and alloying elements, and by suitable heat treatment, steel can be made so soft and ductile that it can be cold-drawn into complex shapes such as automobile bodies. Conversely, steel can be made extremely hard for wear resistance, or tough enough to withstand enormous loads and shock without deforming or breaking. In addition, some steels are made to resist heat and corrosion by the atmosphere and by a wide variety of chemicals. [Pg.373]

Low—medium alloy steels contain elements such as Mo and Cr for hardenabiHty, and W and Mo for wear resistance (Table 4) (7,16,17) (see Steel). These alloy steels, however, lose their hardness rapidly when heated above 150—340°C (see Fig. 3). Furthermore, because of the low volume fraction of hard, refractory carbide phase present in these alloys, their abrasion resistance is limited. Hence, low—medium alloy steels are used in relatively inexpensive tools for certain low speed cutting appHcations where the heat generated is not high enough to reduce their hardness significantly. [Pg.197]

Sometimes cemented carbide tools are used not only for hardness and wear resistance but also for high modulus or stiffness. For example, in end mills used in high speed machining of aluminum alloys, the deflection of the tool can affect the performance of the tool considerably. This includes chatter... [Pg.203]

Other coatings, such as TiAlN (96), TiCN, Zr02, and ZrN (97), and CrN (98) were developed for special appHcations. The last was developed for higher speed machining of titanium alloys. Sometimes a coating is developed not for its wear-resistance but for its heat insulation. The case in point is alumina coating of cBN to reduce the heat conductivity at the surface so that the cBN performance can be enhanced (99). [Pg.211]

Antimony may be added to copper-base alloys such as naval brass. Admiralty Metal, and leaded Muntz metal in amounts of 0.02—0.10% to prevent dezincification. Additions of antimony to ductile iron in an amount of 50 ppm, preferably with some cerium, can make the graphite fliUy nodular to the center of thick castings and when added to gray cast iron in the amount of 0.05%, antimony acts as a powerflil carbide stabilizer with an improvement in both the wear resistance and thermal cycling properties (26) (see Carbides). [Pg.198]

The first carbonitride alloys based on Ti(C,N)—Ni—Mo were iatroduced ia 1970 foUowed by (Ti, Mo)(C,N)-based compositions having fine microstmctures that provided a balance of wear resistance and toughness (4). Continued research on the titanium carbonitride alloys, often called TiC—TiN cermets, ia the 1980s led to the developmeat of complex cermets having a variety of additives such as molybdeaum carbide(2 l) [12069-89-5] M02C, TaC, NbC, zirconium carbide [12020-14-3], ZrC, hafnium carbide [12069-85-1], HfC, WC, vanadium carbide [12070-10-9], VC, chromium carbide (3 2)... [Pg.442]

Hardness and solubiUty for other carbides make TiC an important component of siatered cemented carbides. Although the addition of TiC or WTiC2 to WC—Co alloys imparts crater wear resistance, it also reduces the transverse mpture strength and fracture toughness of these alloys. Therefore, the amount of TiC or WTiC2 added to WC—Co alloys for steel machining is kept to a minimum, typically no greater than 10 wt %. The TiC-based cermets, on the other hand, may contain 30—85 wt % TiC. [Pg.450]

Hard plating is noted for its excellent hardness, wear resistance, and low coefficient of friction. Decorative plating retains its brilliance because air exposure immediately forms a thin, invisible protective oxide film. The chromium is not appHed directiy to the surface of the base metal but rather over a nickel (see Nickel and nickel alloys) plate, which in turn is laid over a copper (qv) plate. Because the chromium plate is not free of cracks, pores, and similar imperfections, the intermediate nickel layer must provide the basic protection. Indeed, optimum performance is obtained when a controlled but high density (40—80 microcrack intersections per linear millimeter) of microcracks is achieved in the chromium lea ding to reduced local galvanic current density at the imperfections and increased cathode polarization. A duplex nickel layer containing small amounts of sulfur is generally used. In addition to... [Pg.119]

There are a number of metallic compounds of chromium that ate used either as the compound itself or as metallurgical constituents in Cr-beating alloys. Trichromium dicarbide [12012-35-0] is important as a wear-resistant gauge material chromium botide(l 1) [12006-79-0] CrB, for oil well drilling ... [Pg.121]

Table 5. Compositions of Cobalt-Base Wear-Resistant Alloys, wt... Table 5. Compositions of Cobalt-Base Wear-Resistant Alloys, wt...

See other pages where Alloy wear resistant is mentioned: [Pg.243]    [Pg.417]    [Pg.243]    [Pg.417]    [Pg.85]    [Pg.59]    [Pg.388]    [Pg.124]    [Pg.57]    [Pg.251]    [Pg.486]    [Pg.496]    [Pg.134]    [Pg.135]    [Pg.136]    [Pg.179]    [Pg.467]    [Pg.174]    [Pg.537]    [Pg.390]    [Pg.397]    [Pg.62]    [Pg.118]    [Pg.196]    [Pg.198]    [Pg.198]    [Pg.207]    [Pg.216]    [Pg.285]    [Pg.285]    [Pg.285]    [Pg.386]    [Pg.4]    [Pg.273]    [Pg.438]    [Pg.120]    [Pg.372]    [Pg.373]    [Pg.373]   
See also in sourсe #XX -- [ Pg.274 ]

See also in sourсe #XX -- [ Pg.274 ]




SEARCH



Resistance alloys

© 2024 chempedia.info