Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation reaction chirality

Coixjugate Addition Reactions. a,3-Unsaturated N-acyloxazolidinones have been implemented as Michael acceptors, inducing chirality in the same sense as in enolate alkylation reactions. Chiral a,3-unsaturated imides undergo 1,4-addition when treated with diethylaluminum chloride (eq 55). Photochemical initiation is required for the analogous reaction with Dimethylaluminum Chloride. ... [Pg.64]

The first sulfide-catalyzed aziridination via an alkylation/deprotonation route was reported by Dai and coworkers in 1996 for the synthesis of vinyl aziridines through the reaction of N-sulfonylimines with cinnamyl bromide using dimethyl sulfide (0.2 equiv) as a catalyst (Scheme 20.14). PhSMe and PI12S failed to promote this reaction due to the slow alkylation reaction. Chiral sulfide 2 was also tried in this reaction and gave the aziridination product in 23% yield without diastereoselectiv-ity (49 51), but no optical yield was reported [35]. [Pg.560]

Meyers has demonstrated that chiral oxazolines derived from valine or rert-leucine are also effective auxiliaries for asymmetric additions to naphthalene. These chiral oxazolines (39 and 40) are more readily available than the methoxymethyl substituted compounds (3) described above but provide comparable yields and stereoselectivities in the tandem alkylation reactions. For example, addition of -butyllithium to naphthyl oxazoline 39 followed by treatment of the resulting anion with iodomethane afforded 41 in 99% yield as a 99 1 mixture of diastereomers. The identical transformation of valine derived substrate 40 led to a 97% yield of 42 with 94% de. As described above, sequential treatment of the oxazoline products 41 and 42 with MeOTf, NaBKi and aqueous oxalic acid afforded aldehydes 43 in > 98% ee and 90% ee, respectively. These experiments demonstrate that a chelating (methoxymethyl) group is not necessary for reactions to proceed with high asymmetric induction. [Pg.242]

Reductive alkylation with chiral substrates may afford new chiral centers. The reaction has been of interest for the preparation of optically active amino acids where the chirality of the amine function is induced in the prochiral carbonyl moiety 34,35). The degree of induced asymmetry is influenced by substrate, solvent, and temperature 26,27,28,29,48,51,65). Asymmetry also has been obtained by reduction of prochiral imines, using a chiral catalyst 44). Prediction of the major configurational isomer arising from a reductive alkylation can be made usually by the assumption that amine formation comes via an imine, not the hydroxyamino addition compound, and that the catalyst approaches the least hindered side (57). [Pg.91]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

In order to achieve a true comparison between both catalytic systems, colloidal and molecular, which display very different reaction rates, a series of experiments were carried out with the homogeneous molecular system, decreasing the catalyst concentration in the studied allylic alkylation reaction. The reaction evolution is monitored taking samples at different reaction times and analysing each of them by NMR spectroscopy (to determine the conversion) and HPLC chromatography with chiral column (to determine the enantioselectivity of I and II). For molecular catalyst systems, the Pd/substrate ratio was varied between 1/100 and 1/10,000. For the latter ratio, the initial reaction rate was found comparable to that of the colloidal system (Figure 2a), but interestingly the conversion of the substrate is quasi complete after ca. 100 h in... [Pg.432]

A recent formal synthesis of the alkaloid (—)-mitralactonine relied on a reaction that allowed the simultaneous creation of three new bonds, two of them a and one ft with respect to the quinolizine nitrogen. As shown in Scheme 112, treatment of triptamine with chiral aldehyde 480 in the presence of acid directly gave a mixture of diastereo-meric indoloquinolizidines 481 and 482 through a mechanism involving a Pictet-Spengler cyclization and a N-alkylation reaction <2007SL79>. [Pg.69]

A variety of triazole-based monophosphines (ClickPhos) 141 have been prepared via efficient 1,3-dipolar cycloaddition of readily available azides and acetylenes and their palladium complexes provided excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl chlorides <06JOC3928>. A novel P,N-type ligand family (ClickPhine) is easily accessible using the Cu(I)-catalyzed azide-alkyne cycloaddition reaction and was tested in palladium-catalyzed allylic alkylation reactions <06OL3227>. Novel chiral ligands, (S)-(+)-l-substituted aryl-4-(l-phenyl) ethylformamido-5-amino-1,2,3-triazoles 142,... [Pg.229]

Another metal-catalyzed microwave-assisted transformation performed on a polymer support involves the asymmetric allylic malonate alkylation reaction shown in Scheme 12.4. The rapid molybdenum(0)-catalyzed process involving thermostable chiral ligands proceeded with 99% ee on a solid support. When TentaGel was used as as support, however, the yields after cleavage were low (8-34%) compared with the corresponding solution phase microwave-assisted process (monomode cavity) which generally proceeded in high yields (>85%) [30],... [Pg.409]

This alkylation reaction can be applied to intramolecular alkylation affording cyclic products, as shown in Equations (19)-(21). The reaction of 2-vinylpyridines with 1,5- or 1,6-dienes results in the formation of five- or six-membered carbocycles with good efficiency.20,20a,20b In addition to pyridine functionality, oxozole and imidazole rings can be applied to this intramolecular cyclization. When the reaction is conducted in the presence of a monodentate chiral ferrocenylphosphine and [RhCl(coe)2]2, enantiomerically enriched carbocycles are obtained. A similar type of intramolecular cyclization is applied to TV-heterocycles. The microwave irradiation strongly... [Pg.217]

Chapter 1 introduced the nomenclature for chiral systems, the determination of enantiomer composition, and the determination of absolute configuration. This chapter discusses different types of asymmetric reactions with a focus on asymmetric carbon-carbon bond formation. The asymmetric alkylation reaction constitutes an important method for carbon-carbon bond formation. [Pg.71]

Thus, the postulated chelated enolates and their alkylation reaction make the intra-annular chirality transformation possible. This method for enolate formation is the focal point of this chapter, as this is by far the most effective approach to alkylation or other asymmetric synthesis involving carbonyl are compounds. [Pg.79]

Table 2-5 summarizes the results of the asymmetric alkylation (Scheme 2-17) of the lithium enolates derived from 22 or 23.28 When chiral auxiliary 22 or 23 is involved in the alkylation reactions, the substituent at C-4 of the oxazolidine ring determines the stereoselectivity and therefore controls the stereogenic outcome of the alkylation reaction. [Pg.85]

The chiral boron enolates generated from /V-acyl oxazolidones such as 7 and 8 (which were named Evans auxiliaries and have been extensively used in the a-alkylation reactions discussed in Chapter 2) have proved to be among the most popular boron enolates due to the ease of their preparation, removal, and recycling and to their excellent stereoselectivity.8... [Pg.139]

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

Similarly, the ( -alkylation reaction of chiral sulfinamides leads to chiral alkoxyaminosulfonium salts. For instance, methoxypyrrolidino-p-tolylsulfonium salt 119 was formed when chiral sulfinamide 120... [Pg.369]

A further attempt has been made to develop a predictive model for chirality transfer achieved through alkylation reactions of ester enolates which feature chiral auxiliaries. " Hippurate esters (30) derived from (lI , 25 )-trani-2-(p-substituted phenyl)cyclohexanols were found, on reaction with benzyl bromide, to give (31) with predominantly the S configuration at the alkylation centre but with no correlation between the degree of stereoselectivity (20-98%) and the electron density on the aromatic ring. [Pg.357]

Aldol and Related Condensations As an elegant extension of the PTC-alkylation reaction, quaternary ammonium catalysts have been efficiently utilized in asymmetric aldol (Scheme 11.17a)" and nitroaldol reactions (Scheme ll.lTb) for the constmction of optically active p-hydroxy-a-amino acids. In most cases, Mukaiyama-aldol-type reactions were performed, in which the coupling of sUyl enol ethers with aldehydes was catalyzed by chiral ammonium fluoride salts, thus avoiding the need of additional bases, and allowing the reaction to be performed under homogeneous conditions. " It is important to note that salts derived from cinchona alkaloids provided preferentially iyw-diastereomers, while Maruoka s catalysts afforded awh-diastereomers. [Pg.338]

It has been demonstrated that in Bi(OTf)3-catalyzed alkylation reactions the optical activity of enantiopure benzyl alcohols is lost and a racemic product is isolated. This can be explained by a SA-l-type reaction mechanism and the existence of a carbocationic intermediate. However, diastereoselective substitutions of benzyl alcohols with a chiral centre in close neighborhood to the electrophilic carbon should be feasible (Scheme 23). [Pg.131]

The chiral nonracemic bis-benzothiazine ligand 75 has been screened for activity in asymmetric Pd-catalyzed allylic alkylation reactions (Scheme 42) <20010L3321>. The test system chosen for this ligand was the reaction of 1,3-diphenylallyl acetate 301 with dimethyl malonate 302. A stochiometric amount of bis(trimethylsilyl)acetamide (BSA) and a catalytic amount of KOAc were added to the reaction mixture. A catalytic amount of chiral ligand 75 along with a variety of Pd-sources afforded up to 90% yield and 82% ee s of diester 303. Since both enantiomers of the chiral ligand are available, both R- and -configurations of the alkylation product 303 can be obtained. The best results in terms of yield and stereoselectivity were obtained in nonpolar solvents, such as benzene. The allylic alkylation of racemic cyclohexenyl acetate with dimethyl malonate was performed but with lower yields (up to 53%) and only modest enantioselectivity (60% ee). [Pg.560]

The stereochemistry of the alkylation reaction of chiral 1-aminoallyl metallics can be rationalized by supposing (S,S)-9 to be the reacting species. In the case of bulky, poorly complexing solvents, such as tm-butyl methyl ether, metalloinversive Re attack on a tight ion pair from the less-hindered allyl face is favored. With better complexing and smaller solvents, such as THF, a looser ion pair reacts by a metalloretentive mode on the Si-side which now becomes more reactive. [Pg.687]

Rotation is hindered in the enolate. Thus, if the a-substituent R1 4= R2, the enolate can exist in two forms, the syn- and anti-forms (enolates 2 and 3, respectively, if R2 has higher priority than R1). Attack of an electrophile on either face of the enolates, 2 or 3, leads to a mixture of the alkylated amides, 4 and 5. If R1 and R2 and the A-substituents R3 and R4 are all achiral, the two alkylated amides will be mirror images and thus a racemate results. If, however, any of the R substituents are chiral, enolate 2 will give a certain ratio of alkylated amide 4/5, whereas enolate 3 will give a different, usually inverted, ratio. Thus, for the successful design of stereoselective alkylation reactions of chiral amide enolates it is of prime importance to control the formation of the enolate so that one of the possible syn- or anti-isomers is produced in large excess over the other,... [Pg.791]

One of the most important factors for successful diastereoselection in chiral amide enolate alkylation reactions is the presence of strongly chelated ionic intermediates1 3. The chelation serves the purpose of locking the chiral auxiliary in a fixed position relative to the enolate. The metal counterion is chelated between the enolate oxygen and an additional polar group, anionic, carbonyl or ether oxygen attached to the chiral auxiliary. [Pg.792]

The combined Birch reduction alkylation of chiral, enantiomerically pure aroyl amides of 2-pyrrolidinemethanol (prolinol) or 2-pyrrolidinecarboxylic acid (proline) gives chiral, non-racemic, 1,1-disubstituted 2,5-cyclohexadienes 1 or 2-cyclohexenes 2, respectively, in high diastereomeric ratios. These reactions are useful for the preparation of valuable chiral synthetic intermediates 3 25 29-31-36. [Pg.847]


See other pages where Alkylation reaction chirality is mentioned: [Pg.245]    [Pg.245]    [Pg.106]    [Pg.157]    [Pg.175]    [Pg.183]    [Pg.41]    [Pg.137]    [Pg.207]    [Pg.8]    [Pg.24]    [Pg.35]    [Pg.142]    [Pg.232]    [Pg.300]    [Pg.89]    [Pg.947]    [Pg.526]    [Pg.92]    [Pg.337]    [Pg.79]    [Pg.227]    [Pg.156]    [Pg.82]    [Pg.817]    [Pg.830]   
See also in sourсe #XX -- [ Pg.619 ]

See also in sourсe #XX -- [ Pg.619 ]




SEARCH



Chiral alkyl

Reactions chiral

© 2024 chempedia.info