Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation catalytic phase-transfer

Amides are very weak nucleophiles, far too weak to attack alkyl halides, so they must first be converted to their conjugate bases. By this method, unsubstituted amides can be converted to N-substituted, or N-substituted to N,N-disubstituted, amides. Esters of sulfuric or sulfonic acids can also be substrates. Tertiary substrates give elimination. O-Alkylation is at times a side reaction. Both amides and sulfonamides have been alkylated under phase-transfer conditions. Lactams can be alkylated using similar procedures. Ethyl pyroglutamate (5-carboethoxy 2-pyrrolidinone) and related lactams were converted to N-alkyl derivatives via treatment with NaH (short contact time) followed by addition of the halide. 2-Pyrrolidinone derivatives can be alkylated using a similar procedure. Lactams can be reductively alkylated using aldehydes under catalytic hydrogenation... [Pg.513]

The catalytic phase-transfer alkylation of 18 with l-chloro-4-iodobutane afforded the adduct (S)-201 in 88% yield and excellent 99% ee. Subsequent conversion of this intermediate (S)-20p into the final product (S)-39 was accomplished in high yield (the overall yield starting from 18 was 77%). [Pg.27]

Azide anion, which is more nucleophilic than amines, reacts with alkyl halides and activated alcohols giving the corresponding alkyl azides. Phase-transfer conditions can also be utilized. For details, readers are referred to a comprehensive review. Alkyl azides thus formed can be readily transformed into primary amines by a variety of reagents or reaction systems which involve catalytic hydrogenation, LiAlH4, NaBH4 under phase-transfer conditions, NaBH /THF/MeOH, PhsP ... [Pg.76]

Kim et al. used an enantioselective catalytic phase transfer alkylation, together with a ring-closing metathesis for pyrrolidine ring constmction, to first synthesize the phenanthroindolizidine (-)-antofine [(-)-3] [63, 63]. Two similar approaches were developed, but only the later approach is illustrated in Scheme (8). As the key intermediate of this synthetic pathway, 77 is in enantiomerically pure form and was achieved by using a... [Pg.18]

Lemaire, C., Guillouet, S., Plenevaux, A., et al. (1999) The synthesis of 6-[18F]fluoro-L-dopa by chiral catalytic phase-transfer alkylation. J Labeled Comp. Radiopharm., 42, S113-S115. [Pg.385]

Summary. Asymmetric catalytic phase transfer alkylations are effective within a limited pool of substrates. No generalized catalyst is effective with a wide range of substrates instead, catalyst and conditions must be tuned for each reaction. The rationale for enantioselectivity has been probed by theory and experiment, but much work remains to unravel the details of the chemistry. [Pg.1209]

Kim S, Lee J, Lee T, Park HG, Kim D (2003) First Asymmetric Total Synthesis of (-)-Antofine by Using an Enantioselective Catalytic Phase Transfer Alkylation. Org Lett 5 2703... [Pg.156]

Kim S, Lee J, Lee T, Park H, Kim D. First asymmetric total synthesis of (—)-antofine by using an enantioselective catalytic phase transfer alkylation. Org. Lett. 2003 5(15) 2703-2706. [Pg.141]

It is well known that aziridination with allylic ylides is difficult, due to the low reactivity of imines - relative to carbonyl compounds - towards ylide attack, although imines do react with highly reactive sulfur ylides such as Me2S+-CH2-. Dai and coworkers found aziridination with allylic ylides to be possible when the activated imines 22 were treated with allylic sulfonium salts 23 under phase-transfer conditions (Scheme 2.8) [15]. Although the stereoselectivities of the reaction were low, this was the first example of efficient preparation of vinylaziridines by an ylide route. Similar results were obtained with use of arsonium or telluronium salts [16]. The stereoselectivity of aziridination was improved by use of imines activated by a phosphinoyl group [17]. The same group also reported a catalytic sulfonium ylide-mediated aziridination to produce (2-phenylvinyl)aziridines, by treatment of arylsulfonylimines with cinnamyl bromide in the presence of solid K2C03 and catalytic dimethyl sulfide in MeCN [18]. Recently, the synthesis of 3-alkyl-2-vinyl-aziridines by extension of Dai s work was reported [19]. [Pg.41]

In the mid-1960s a series of papers by Makosza and Serafinowa (1965, 1966) appeared under the common title Reactions of Organic Anions , in which the catalytic alkylation of phenylacetonitrile and its derivatives carried out in the presence of concentrated NaOH and the catalyst triethylbenzylammonium chloride (TEBA) was described. This was the beginning of phase-transfer catalysis (PTC), and since then thousands of papers haven been published on the subject. [Pg.117]

An enantioselective synthesis of both (R)- and (5)-a-alkylcysteines 144 and 147 is based on the phase-transfer catalytic alkylation of fert-butyl esters of 2-phenyl-2-thiazoline-4-carboxylic acid and 2-ort/ro-biphenyl-2-thiazoline-4-carboxylic acid, 142 and 145 <06JOC8276>. Treatment of 142 and 145 with alkyl halides and potassium hydroxide in the presence of chiral catalysts 140 and 141 gives the alkylated products, which are hydrolyzed to (R)- and (S)-a-alkylcysteines 144 and 147, respectively, in high enantioselectivity. This method may have potential for the practical synthesis of chiral a-alkylcysteines. [Pg.254]

A typical phase transfer catalytic reaction of the liquid/liquid type is the cyanation of an alkyl halide in an organic phase using sodium or potassium cyanide in an aqueous phase. When these phases are stirred and heated together very little reaction occurs. However, addition of a small amount of crown ether (or cryptand) results in the reaction occurring to yield the required nitrile. The crown serves to transport the cyanide ion, as its ion pair with the complexed potassium cation, into the organic phase allowing the reaction to proceed. [Pg.109]

E. J. Corey, F. Xu, M. C. Noe, A Rational Approach to Catalytic Enantioselective Enolate Alkylation Using a Structurally Rigidified and Defined Chiral Quaternary Ammonium Salt under Phase Transfer Conditions , J. Am. Chem. Soc, 1997,119,12414-12415. [Pg.141]

Ohtomi et al. (1976) have studied the catalytic effect of polypode ligands, such as [ 116] on the reactions of alkyl halides under liquid-liquid phase-transfer conditions (Table 34). Primary alkyl iodides are seen to be more reactive than the corresponding bromides. In contrast, the reactivity towards CN- declines in the order RBr > RI > RC1. It is interesting to note that this order differs from that observed in solid-liquid two-phase systems catalysed by crown ethers (Cook et al., 1974). [Pg.330]

Probably the most important group of phase transfer reactions, and certainly the commonest, are those in which an anion is transferred from the aqueous phase into the organic solvent, where nucleophilic substitution occurs. These would once have been performed in a dipolar aprotic solvent such as DMF. A good example is the reaction between an alkyl halide (such as 1-chlorooctane), and aqueous sodium cyanide, shown in Scheme 5.5. Without PTC, the biphasic mixture can be stirred and heated together for 2 weeks and the only observable reaction will be hydrolysis of the cyanide group. Addition of a catalytic amount of a quaternary onium salt, or a crown ether, however, will lead to the quantitative conversion to the nitrile within 2 h. [Pg.112]

The application of phase-transfer catalysis to the Williamson synthesis of ethers has been exploited widely and is far superior to any classical method for the synthesis of aliphatic ethers. Probably the first example of the use of a quaternary ammonium salt to promote a nucleophilic substitution reaction is the formation of a benzyl ether using a stoichiometric amount of tetraethylammonium hydroxide [1]. Starks mentions the potential value of the quaternary ammonium catalyst for Williamson synthesis of ethers [2] and its versatility in the synthesis of methyl ethers and other alkyl ethers was soon established [3-5]. The procedure has considerable advantages over the classical Williamson synthesis both in reaction time and yields and is certainly more convenient than the use of diazomethane for the preparation of methyl ethers. Under liquidrliquid two-phase conditions, tertiary and secondary alcohols react less readily than do primary alcohols, and secondary alkyl halides tend to be ineffective. However, reactions which one might expect to be sterically inhibited are successful under phase-transfer catalytic conditions [e.g. 6]. Microwave irradiation and solidrliquid phase-transfer catalytic conditions reduce reaction times considerably [7]. [Pg.69]

A./V-Dialkylhydroxylamines and oximes are readily alkylated to produce O-alkyl ethers [34-36] and oximes also react rapidly with dichloromethane to form the methylene dioximes [36-38]. O-Benzylhydroxylamine can be prepared on a large scale by alkylation of A-hydroxyphthalimidc under phase-transfer catalytic conditions and subsequent solvolysis of the imide system [39]. [Pg.74]

Hydroxycoumarins are alkylated under extremely mild basic liquiddiquid phase-transfer catalytic conditions to produce the ethers and 4-alkylated derivatives 141 ]. The major product tends to be the ether (50-60%) but the yield of the C-alkyl-ated product is significant with allyl bromide and with propargyl bromide, where rearrangement of the allenic derivative occurs. [Pg.85]

Methyl esters undergo trans-esterification with the quaternary ammonium salts at high temperature and the reaction has been used with some effect for the preparation of, for example, n-butyl esters by heating the methyl ester with tetra-n-butylammo-nium chloride at 140°C [31]. Optimum yields (>75%) are obtained in HMPA or in the absence of a solvent. A two-step (one-pot) trans-esterification under phase-transfer catalysed conditions in which the carboxylate anion generated by initially hydrolysis of the ester is alkylated has been reported for Schiff s bases of a-amino acids [32] and for A-alkoxycarbonylmethyl [1-lactams [33]. Direct trans-esterification of methyl and ethyl esters with alcohols under basic catalytic conditions occurs in good yield in the presence of Aliquat [34, 35]. [Pg.91]

An interesting preparation of alkyl carboxylates in high yield (Table 3.14) from the sodium salt of the carboxylic acids under mild phase-transfer catalytic conditions involves their reaction with alkyl chlorosulphate [50] and has been used with success in the preparation of alkyl esters derived from p-lactam antibiotics. The procedure is also excellent for the production of chloromethyl esters, particularly where the carboxylic acids will not withstand the classical Lewis acid-catalysed procedure using an acid chloride and formaldehyde, or where the use of iodochloromethane [51] results in the formation of the bis(acyloxy)methane. The procedure has been applied with some success to the synthesis of chloromethyl A-protected a-amino carboxylates [52],... [Pg.95]

Dialkyl hydrogen phosphites are alkylated in high yield under basic liquiddiquid phase-transfer catalytic conditions via the Michaelis-Becker reaction to yield dialkyl alkylphosphonates without serious side reactions [16, 17]. [Pg.111]

The 0,5-dialkyl dithiocarbonates (Table 4.8) are readily prepared under phase-transfer catalytic conditions by the reaction of an alkylating agent with potassium O-alkyl dithiocarbonate [35, 39], which can be obtained from carbon disulphide and the appropriate potassium alkoxide [cf. 40]. Monosaccharides are converted into 5-glycosyl dithiocarbonates via the in situ formation of the tosylate, followed by reaction with potassium O-alkyl dithiocarbonate (Scheme 4.6) [41], In a similar manner, 5-glycosyl 7V,7V-diethyldithiocarbamates are obtained from the monosaccharide and A.A-diethyldithiocarbamate (see 4.3.2) [42]. [Pg.127]

The reverse reaction in which thioacetamide is initially alkylated and then reacted under phase-transfer catalytic conditions with the acyl halide results in the formation of A-acylthioamidates (Scheme 4.15), with only trace amounts of the S-alkyl thioesters [35], S-Alkyl thioacetates have also been obtained from trifluoro-methylsulphonyloxy compounds upon reaction with potassium thioacetate in the presence of TDA-1 [61]. It is probable that tetraalkylammonium salts would be equally good catalysts. [Pg.140]

Alkylation of trifluoro- and trichloroacetamides with a-bromoacetic esters has been utilized for the synthesis of a wide range of a-aminoacetic acids [11-13] (Table 5.13). Hydrolysis of the intermediate a-trihaloacetamidoacetic esters with methanolic potassium hydroxide converts the methyl and ethyl esters directly into the amino carboxylic acids. /-Butyl a-aminoacetates are more stable, but they are hydrolysed under phase-transfer catalytic conditions (see Chapter 9.2). Reaction of the trihaloacetamides with 1,4-dibromobutane and 1,5-dibromopentane and subsequent hydrolysis provides a simple route to pyrrolidine-2-carboxylic acid (75%) and piperidine-2-carboxylic acid (58%) [11, 12],... [Pg.176]


See other pages where Alkylation catalytic phase-transfer is mentioned: [Pg.135]    [Pg.191]    [Pg.448]    [Pg.219]    [Pg.28]    [Pg.76]    [Pg.201]    [Pg.54]    [Pg.269]    [Pg.311]    [Pg.575]    [Pg.1029]    [Pg.311]    [Pg.575]    [Pg.1]    [Pg.127]    [Pg.10]    [Pg.72]    [Pg.83]    [Pg.84]    [Pg.86]    [Pg.175]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Alkyl transfer

Catalytic alkylations

Catalytic asymmetric phase-transfer alkylation

Catalytic enantioselective phase-transfer alkylation

Catalytic phase

Phase transfer alkylations

Transfer-alkylation

© 2024 chempedia.info