Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl alcohols iodination

Sulfonic acids are prone to reduction with iodine [7553-56-2] in the presence of triphenylphosphine [603-35-0] to produce the corresponding iodides. This type of reduction is also facile with alkyl sulfonates (16). Aromatic sulfonic acids may also be reduced electrochemicaHy to give the parent arene. However, sulfonic acids, when reduced with iodine and phosphoms [7723-14-0] produce thiols (qv). Amination of sulfonates has also been reported, in which the carbon—sulfur bond is cleaved (17). Ortho-Hthiation of sulfonic acid lithium salts has proven to be a useful technique for organic syntheses, but has Httie commercial importance. Optically active sulfonates have been used in asymmetric syntheses to selectively O-alkylate alcohols and phenols, typically on a laboratory scale. Aromatic sulfonates are cleaved, ie, desulfonated, by uv radiation to give the parent aromatic compound and a coupling product of the aromatic compound, as shown, where Ar represents an aryl group (18). [Pg.96]

Anionic hydridoiron species undergo selective addition to a, -unsaturated earbonyl compounds in methanol to give reduction products (Noyori et al., 1972c). Under an atmosphere of carbon monoxide, carbonylation takes place. Methylmalonate is selectively obtained from acrylate by treatment of the reaction mixture with alcoholic iodine (Masada et al., 1970). The organo-iron complexes are readily acylated by treatment with alkyl iodides in an aprotic solvent (Mitsudo et al., 1974). [Pg.143]

A special apparatus (Fig. Ill, 40,1) renders the preparation of iodides from alcohols a very simple operation. The special features of the apparatus are —(i) a wide bored (3-4 mm.) stopcock A which considerably reduces the danger of crystallisation in the bore of the tap of the iodine from the hot alcoholic solution (ii) a reservoir B for the solid iodine and possessing a capacity sufficiently large to hold all the alkyl iodide produced (iii) a wide tube C which permits the alcohol vapour fix)m the flask D to pass rapidly into the reservoir B, thus ensuring that the iodine is dissolved by alcohol which is almost at the boiling point. An improved apparatus is shown in Fig. Ill, 40, 2, a and b here a... [Pg.285]

The small capacity apparatus is especially recommended for the use of students the consumption of iodine by a large class of students is not unreasonably high. Larger apparatus, e.g., 60 ml. and 100 ml. capacity holding 100 g. and 200 g. respectively of iodine, are generally preferred for routine preparations of alkyl iodides the bolt-head flask should then be of 250 or 500 ml. capacity. Thus for n-butyl iodide a typical preparation would employ 120 g. (148-5 ml.) of n.butyl alcohol, 21 75 g. of red phosphorus, and 200 g. of iodine. [Pg.287]

Various electrophiles other than iodine have been used to induce alkenyl coupling (9). Alkyl haUdes and protic acids react with alkynylborates to yield mixtures of stereoisomeric alkenylboranes. Nevertheless, oxidation of these products is synthetically useful, providing single ketones (296—298). Alcohols are obtained from the corresponding alkenylborates. [Pg.316]

Alcohols react with nascent hydroiodic acid to form alkyl iodides. When the starting material is an alcohol ether sulfate, the resulting alcohol ethoxylate obtained by acid hydrolysis of the sulfate gives the corresponding alkyl iodides. The number of moles of diiodoethane equals the number of moles of ethylene oxide present in the alcohol ethoxylate. Diiodoethane decomposes or reacts with more hydrogen iodide to give iodine quantitatively in both cases. However,... [Pg.285]

As esters the alkyl halides are hydrolysed by alkalis to alcohols and salts of halogen acids. They are converted by nascent hydrogen into hydrocarbons, by ammonia into amines, by alkoxides into ethers, by alkali hydrogen sulphides into mercaptans, by potassium cyanide into nitriles, and by sodium acetate into acetic esters. (Formulate these reactions.) The alkyl halides are practically insoluble in water but are, on the other hand, miscible with organic solvents. As a consequence of the great affinity of iodine for silver, the alkyl iodides are almost instantaneously decomposed by aqueous-alcoholic silver nitrate solution, and so yield silver iodide and alcohol. The important method of Ziesel for the quantitative determination of alkyl groups combined in the form of ethers, depends on this property (cf. p. 80). [Pg.98]

An alkyl halide (also known as a haloalkane) is an alkane in which one or more hydrogen atoms have been replaced with halogen atoms, such as F, Cl, Br, or I. The functional group of alkyl halides is R—X, where X represents a halogen atom. Alkyl halides are similar in structure, polarity, and reactivity to alcohols. To name an alkyl halide, first name the parent hydrocarbon. Then use the prefix fluoro-, chloro-, bromo-, or iodo-, with a position number, to indicate the presence of a fluorine atom, chlorine atom, bromine atom, or iodine atom. The following Sample Problem shows how to name an alkyl halide. [Pg.28]

Tojo and co-workers reported a one-pot synthesis of alkyl nitrates from alcohols via the alkyl iodide the alcohol is treated with a mixture of iodine, triphenylphosphine and imidazole in diethyl ether-acetonitrile, and the resulting alkyl iodide is reacted in situ with silver nitrate (Equation 3.8). Reported yields for primary alcohols are good to excellent but yields are lower for secondary alcohols. [Pg.98]

Common alcohol oxidation methods employ stoichiometric amounts of toxic and reactive oxidants like Cr03, hypervalent iodine reagents (Dess-Martin) and peracids that pose severe safety and environmental hazards in large-scale industrial reactions. Therefore, a variety of catalytic methods for the oxidation of alcohols to aldehydes, ketones or carboxylic acids have been developed employing hydrogen peroxide or alkyl hydroperoxides as stoichiometric oxygen sources in the presence of catalytic amounts of a metal catalyst. The commonly used catalysts for alcohol oxidation are different MoAV(VI), Mn(II), Cr(VI), Re(Vn), Fe(II) and Ru complexes . A selection of published known alcohol oxidations with different catalysts will be presented here. [Pg.492]


See other pages where Alkyl alcohols iodination is mentioned: [Pg.17]    [Pg.1474]    [Pg.291]    [Pg.272]    [Pg.157]    [Pg.246]    [Pg.68]    [Pg.341]    [Pg.352]    [Pg.518]    [Pg.77]    [Pg.191]    [Pg.291]    [Pg.425]    [Pg.113]    [Pg.76]    [Pg.409]    [Pg.245]    [Pg.73]    [Pg.17]    [Pg.116]    [Pg.70]   
See also in sourсe #XX -- [ Pg.6 , Pg.213 ]

See also in sourсe #XX -- [ Pg.213 ]

See also in sourсe #XX -- [ Pg.6 , Pg.213 ]

See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Alcohols alkylated

Alcohols alkylation

Alcohols iodination

Alkyl alcohols

Alkyl iodine

© 2024 chempedia.info