Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes transition metals

From Other Alkenes-Transition Metal Catalyzed Cross-Coupling and Olefin... [Pg.103]

Fig. 8.1. Representation of n bonding in alkene-transition-metal complexes. Fig. 8.1. Representation of n bonding in alkene-transition-metal complexes.
Polymerization and co-polymerization of a-alkenes Transition metal/Al203 36... [Pg.53]

Alkene Transition Metal Complexes Containing Trifluorophosphine... [Pg.83]

Crystal structures of ethylmagnesium bromide Crystal structure of tetrameric phenyllithium etherate Representation of tt bonding in alkene-transition-metal complexes Mechanisms for addition of singlet and triplet carbenes to alkenes Frontier orbital interpretation of radical substituent effects Chain mechanism for radical addition reactions mediated by trialkylstannyl radicals... [Pg.818]

Uses. Magnesium alkyls are used as polymerization catalysts for alpha-alkenes and dienes, such as the polymerization of ethylene (qv), and in combination with aluminum alkyls and the transition-metal haUdes (16—18). Magnesium alkyls have been used in conjunction with other compounds in the polymerization of alkene oxides, alkene sulfides, acrylonitrile (qv), and polar vinyl monomers (19—22). Magnesium alkyls can be used as a Hquid detergents (23). Also, magnesium alkyls have been used as fuel additives and for the suppression of soot in combustion of residual furnace oil (24). [Pg.340]

NMR, 3, 542 oxidation, 3, 546 phosphorescence, 3, 543 photoelectron spectra, 3, 542 photolysis, 3, 549 reactions, 3, 543-555 with alkenes, 3, 50 with alkynes, 3, 50 with IH-azepines, 3, 552 with azirines, 3, 554 with cyclobutadiene, 3, 551 with cyclopropenes, 3, 550 with dimethylbicyclopropenyl, 3, 551 with heterocyclic transition metal complexes, 7, 28 29... [Pg.852]

The use of supported transition metal oxide and Ziegler-Natta-type catalysts for polymerising aliphatic olefins (alkenes) was extended in the 1960s and 1970s to the ring-opening polymerisation of cyclo-olefins. [Pg.304]

Other convenient routes to carboranes, selected from the growing number of recently reported syntheses, are as follows. Monocarbon carboranes can be prepared in good yield by the transition-metal catalysed hydroboration of alkenes followed by thermal rearrangement of the intermediate product, c.gP" ... [Pg.183]

Stable transition-metal complexes may act as homogenous catalysts in alkene polymerization. The mechanism of so-called Ziegler-Natta catalysis involves a cationic metallocene (typically zirconocene) alkyl complex. An alkene coordinates to the complex and then inserts into the metal alkyl bond. This leads to a new metallocei e in which the polymer is extended by two carbons, i.e. [Pg.251]

When a mixture of alkenes 1 and 2 or an unsymmetrically substituted alkene 3 is treated with an appropriate transition-metal catalyst, a mixture of products (including fi/Z-isomers) from apparent interchange of alkylidene moieties is obtained by a process called alkene metathesis. With the development of new catalysts in recent years, alkene metathesis has become a useful synthetic method. Special synthetic applications are, for example, ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROM) (see below). [Pg.10]

The first example of homogeneous transition metal catalysis in an ionic liquid was the platinum-catalyzed hydroformylation of ethene in tetraethylammonium trichlorostannate (mp. 78 °C), described by Parshall in 1972 (Scheme 5.2-1, a)) [1]. In 1987, Knifton reported the ruthenium- and cobalt-catalyzed hydroformylation of internal and terminal alkenes in molten [Bu4P]Br, a salt that falls under the now accepted definition for an ionic liquid (see Scheme 5.2-1, b)) [2]. The first applications of room-temperature ionic liquids in homogeneous transition metal catalysis were described in 1990 by Chauvin et al. and by Wilkes et ak. Wilkes et al. used weekly acidic chloroaluminate melts and studied ethylene polymerization in them with Ziegler-Natta catalysts (Scheme 5.2-1, c)) [3]. Chauvin s group dissolved nickel catalysts in weakly acidic chloroaluminate melts and investigated the resulting ionic catalyst solutions for the dimerization of propene (Scheme 5.2-1, d)) [4]. [Pg.214]

As early as 1990, Chauvin and his co-workers from IFP published their first results on the biphasic, Ni-catalyzed dimerization of propene in ionic liquids of the [BMIM]Cl/AlCl3/AlEtCl2 type [4]. In the following years the nickel-catalyzed oligomerization of short-chain alkenes in chloroaluminate melts became one of the most intensively investigated applications of transition metal catalysts in ionic liquids to date. [Pg.245]

The discovery of the metathesis reaction is also of importance from a theoretical and fundamental point of view, and has contributed to the development of new ideas about reactions of alkenes in the presence of transition metal compounds. [Pg.132]

Solid catalysts for the metathesis reaction are mainly transition metal oxides, carbonyls, or sulfides deposited on high surface area supports (oxides and phosphates). After activation, a wide variety of solid catalysts is effective, for the metathesis of alkenes. Table I (1, 34 38) gives a survey of the more efficient catalysts which have been reported to convert propene into ethene and linear butenes. The most active ones contain rhenium, molybdenum, or tungsten. An outstanding catalyst is rhenium oxide on alumina, which is active under very mild conditions, viz. room temperature and atmospheric pressure, yielding exclusively the primary metathesis products. [Pg.136]

It should be noted that we have confined ourselves to the simplest reaction intermediates, namely, complexes involving only one transition metal atom and two alkene molecules. If the possibility of two transition metal atoms is taken into account the following complexes seem most likely ... [Pg.151]

The addition of halocarbons (RX) across alkene double bonds in a radical chain process, the Kharasch reaction (Scheme 9.29),261 has been known to organic chemistry since 1932. The overall process can be catalyzed by transition metal complexes (Mt"-X) it is then called Atom Transfer Radical Addition (ATRA) (Scheme 9.30).262... [Pg.486]

Similar correlations of orbital interactions with substituent effects were also found in additions of alkenes to substituted carbenes and of N2 to transition metal complexes (see Zollinger, 1983 b, 1990). [Pg.183]

With regard to the mechanism of these Pd°-catalyzed reactions, little is known in addition to what is shown in Scheme 10-62. In our opinion, the much higher yields with diazonium tetrafluoroborates compared with the chlorides and bromides, and the low yields and diazo tar formation in the one-pot method using arylamines and tert-butyl nitrites (Kikukawa et al., 1981 a) indicate a heterolytic mechanism for reactions under optimal conditions. The arylpalladium compound is probably a tetra-fluoroborate salt of the cation Ar-Pd+, which dissociates into Ar+ +Pd° before or after addition to the alkene. An aryldiazenido complex of Pd(PPh3)3 (10.25) was obtained together with its dediazoniation product, the corresponding arylpalladium complex 10.26, in the reaction of Scheme 10-64 by Yamashita et al. (1980). Aryldiazenido complexes with compounds of transition metals other than Pd are discussed in the context of metal complexes with diazo compounds (Zollinger, 1995, Sec. 10.1). [Pg.253]

Olefin metathesis is the transition-metal-catalyzed inter- or intramolecular exchange of alkylidene units of alkenes. The metathesis of propene is the most simple example in the presence of a suitable catalyst, an equilibrium mixture of ethene, 2-butene, and unreacted propene is obtained (Eq. 1). This example illustrates one of the most important features of olefin metathesis its reversibility. The metathesis of propene was the first technical process exploiting the olefin metathesis reaction. It is known as the Phillips triolefin process and was run from 1966 till 1972 for the production of 2-butene (feedstock propene) and from 1985 for the production of propene (feedstock ethene and 2-butene, which is nowadays obtained by dimerization of ethene). Typical catalysts are oxides of tungsten, molybdenum or rhenium supported on silica or alumina [ 1 ]. [Pg.224]


See other pages where Alkenes transition metals is mentioned: [Pg.716]    [Pg.124]    [Pg.1280]    [Pg.43]    [Pg.478]    [Pg.1279]    [Pg.716]    [Pg.124]    [Pg.1280]    [Pg.43]    [Pg.478]    [Pg.1279]    [Pg.407]    [Pg.125]    [Pg.127]    [Pg.26]    [Pg.333]    [Pg.224]    [Pg.748]    [Pg.11]    [Pg.13]    [Pg.14]    [Pg.229]    [Pg.285]    [Pg.739]    [Pg.342]    [Pg.141]    [Pg.86]    [Pg.22]    [Pg.224]    [Pg.10]   
See also in sourсe #XX -- [ Pg.679 , Pg.680 ]




SEARCH



Alkene isomerizations catalyzed by transition metal complexes

Alkene transition metal-catalyzed epoxidation

Alkene transition-metal catalyzed polymerizations

Alkenes by Transition Metals

Alkenes complexes with transition metals

Alkenes metallation

Alkenes transition metal catalysis

Alkenes transition metal peroxide oxidation

Alkenes transition metal-catalyzed

Epoxidations of Alkenes Catalyzed by Early Transition Metals

Metal alkenes

Silicon-transition-metal complexes alkenes

Transition Metal Bonding to Alkenes Zeises Salt

Transition Metal-Alkene Complexes

Transition alkene

Transition metal catalysts alkene cross-coupling reactions

Transition metal catalyzed alkene substrates catalysts

Transition metal complexes alkene metathesis

Transition metal complexes fluorinated alkenes

Transition metal peroxides alkenes

Transition-metal derivatives alkene insertion into

Transition-metal-coordinated alkenes

Transition-metal-coordinated alkenes complex hydrides

Transition-metal-coordinated alkenes reactions with

© 2024 chempedia.info