Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali metals solubility

The solubility of some transition elements in liquid lithium is found to be influenced by the nitrogen content of the alkali metal. Solubilities of elements can only be measured in very pure lithium. Nitrogen contents of >50 wppm increase the saturation concentrations. The presence of nitrogen, however, does not evidently change the values of the free enthalpy of solution. [Pg.152]

An emulsifying agent generally produces such an emulsion that the liquid in which it is most soluble forms the external phase. Thus the alkali metal soaps and hydrophilic colloids produce O/W emulsions, oil-soluble resins the W/O type (see emulsion). [Pg.156]

One may rationalize emulsion type in terms of interfacial tensions. Bancroft [20] and later Clowes [21] proposed that the interfacial film of emulsion-stabilizing surfactant be regarded as duplex in nature, so that an inner and an outer interfacial tension could be discussed. On this basis, the type of emulsion formed (W/O vs. O/W) should be such that the inner surface is the one of higher surface tension. Thus sodium and other alkali metal soaps tend to stabilize O/W emulsions, and the explanation would be that, being more water- than oil-soluble, the film-water interfacial tension should be lower than the film-oil one. Conversely, with the relatively more oil-soluble metal soaps, the reverse should be true, and they should stabilize W/O emulsions, as in fact they do. An alternative statement, known as Bancroft s rule, is that the external phase will be that in which the emulsifying agent is the more soluble [20]. A related approach is discussed in Section XIV-5. [Pg.504]

As with the hydroxides, we find that whilst the carbonates of most metals are insoluble, those of alkali metals are soluble, so that they provide a good source of the carbonate ion COf in solution the alkali metal carbonates, except that of lithium, are stable to heat. Group II carbonates are generally insoluble in water and less stable to heat, losing carbon dioxide reversibly at high temperatures. [Pg.132]

Ammonium salts. Ammonium salts can be prepared by the direct neutralisation of acid by ammonia. The salts are similar to alkali metal salts and are composed of discrete ions. Most ammonium salts are soluble in water. Since ammonia is volatile and readily oxidisable the behaviour of ammonium salts to heat is particularly interesting. [Pg.221]

It is slightly soluble in water, giving a neutral solution. It is chemically unreactive and is not easily oxidised or reduced and at room temperature it does not react with hydrogen, halogens, ozone or alkali metals. However, it decomposes into its elements on heating, the decomposition being exothermic ... [Pg.229]

Nitrates are prepared by the action of nitric acid on a metal or its oxide, hydroxide or carbonate. All nitrates are soluble in water. On heating, the nitrates of the alkali metals yield only oxygen and the nitrite ... [Pg.242]

These are similar to those of the alkali metals but are rather less soluble in water. However, calcium sulphide, for example, is not precipitated by addition of sulphide ions to a solution of a calcium salt, since in acid solution the equilibrium position... [Pg.287]

The redox properties have already been considered. A number of reactions of soluble (alkali metal) sulphites are noteworthy ... [Pg.294]

The chromates of the alkali metals and of magnesium and calcium are soluble in water the other chromates are insoluble. The chromate ion is yellow, but some insoluble chromates are red (for example silver chromate, Ag2Cr04). Chromates are often isomorph-ous with sulphates, which suggests that the chromate ion, CrO has a tetrahedral structure similar to that of the sulphate ion, SO4 Chromates may be prepared by oxidising chromium(III) salts the oxidation can be carried out by fusion with sodium peroxide, or by adding sodium peroxide to a solution of the chromium(IIl) salt. The use of sodium peroxide ensures an alkaline solution otherwise, under acid conditions, the chromate ion is converted into the orange-coloured dichromate ion ... [Pg.378]

Sulphonic acids. The aromatic sulphonic acids and their alkali metal salts are soluble in water, but insoluble in ether (Solubility Group II). They are best characterised by conversion into crystalline S-benzyl-iso-thiuronium salts (see Section IV,33,2 and 111,85,5), which possess characteristic melting points. A more time-consuming procedure is to treat the well-dried acid or... [Pg.1077]

Salt Formation. Salt-forming reactions of adipic acid are those typical of carboxylic acids. Alkali metal salts and ammonium salts are water soluble alkaline earth metal salts have limited solubiUty (see Table 5). Salt formation with amines and diamines is discussed in the next section. [Pg.240]

Halides. Indium trichloride [10025-83-8] InCl, can be made by heating indium in excess chlorine or by chlorinating lower chlorides. It is a white crystalline soHd, deUquescent, soluble in water, and has a high vapor pressure. InCl forms chloroindates, double salts with chlorides of alkaLi metals, and organic bases. [Pg.81]

Alkyl hydroperoxides can be Hquids or soHds. Those having low molecular weight are soluble in water and are explosive in the pure state. As the molecular weight increases, ie, as the active oxygen content is reduced, water solubiUty and the violence of decomposition decrease. Alkyl hydroperoxides are stronger acids than the corresponding alcohols and have acidities similar to those of phenols, Alkyl hydroperoxides can be purified through their alkali metal salts (28). [Pg.103]

Complex Ion Formation. Phosphates form water-soluble complex ions with metallic cations, a phenomenon commonly called sequestration. In contrast to many complexing agents, polyphosphates are nonspecific and form soluble, charged complexes with virtually all metallic cations. Alkali metals are weakly complexed, but alkaline-earth and transition metals form more strongly associated complexes (eg, eq. 16). Quaternary ammonium ions are complexed Htde if at all because of their low charge density. The amount of metal ion that can be sequestered by polyphosphates generally increases... [Pg.339]

Alkali Meta.IPhospha.tes, A significant proportion of the phosphoric acid consumed in the manufacture of industrial, food, and pharmaceutical phosphates in the United States is used for the production of sodium salts. Alkali metal orthophosphates generally exhibit congment solubility and are therefore usually manufactured by either crystallisation from solution or drying of the entire reaction mass. Alkaline-earth and other phosphate salts of polyvalent cations typically exhibit incongment solubility and are prepared either by precipitation from solution having a metal oxide/P20 ratio considerably lower than that of the product, or by drying a solution or slurry with the proper metal oxide/P20 ratio. [Pg.341]

Table 4. Solubilities of Some Alkali Metal Xanthates... Table 4. Solubilities of Some Alkali Metal Xanthates...
Table 9. Aqueous Solubilities of Alkali Metal and Ammonium Borates at Various Temperatures... Table 9. Aqueous Solubilities of Alkali Metal and Ammonium Borates at Various Temperatures...
In general, hydrated borates of heavy metals ate prepared by mixing aqueous solutions or suspensions of the metal oxides, sulfates, or halides and boric acid or alkali metal borates such as borax. The precipitates formed from basic solutions are often sparingly-soluble amorphous soHds having variable compositions. Crystalline products are generally obtained from slightly acidic solutions. [Pg.209]

A signiflcairt property of the alkali metal halides is the solubility of the metals in their molten halides. Typical values of the consolute temperatures of metal-chloride melts are 1180°C in Na-NaF, 1080°C in Na-NaCl, 790°C... [Pg.318]

A complication of tire extension of tire electrolysis route for metal production, is tlrat in the case of the alkali metals, there is a significant solubility of the metal which would be produced by electrolysis in tire molten chloride. The dissolved metal provides very mobile electrons to tire melt, thus reducing the salt resistance, and dissipating the increased cuiTent, at a given applied potential, without the production of metal. To describe this phenomenon in... [Pg.347]

The esterification reaction may be carried out with a number of different anhydrides but the literature indicates that acetic anhydride is preferred. The reaction is catalysed by amines and the soluble salts of the alkali metals. The presence of free acid has an adverse effect on the esterification reaction, the presence of hydrogen ions causing depolymerisation by an unzipping mechanism. Reaction temperatures may be in the range of 130-200°C. Sodium acetate is a particularly effective catalyst. Esterification at 139°C, the boiling point of acetic anhydride, in the presence of 0.01% sodium acetate (based on the anhydride) is substantially complete within 5 minutes. In the absence of such a catalyst the percentage esterification is of the order of only 35% after 15 minutes. [Pg.534]

Group IIA metals inelude Be, Mg, Ca, Sr, Ba and Ra whieh are grey, moderately-hard, high melting-point substanees. Like the alkali metals they attaek water to liberate hydrogen but with less vigour. The salts of the alkaline earths are generally less stable towards heat and water than those of alkali metals, and less water soluble. [Pg.29]

Lithium-ammonia reduction of l7a-ethyl-19-nortestosterone (68) using Procedure 8a (section V) affords the 4,5a-dihydro compound (69) in 85% yield after a reaction time of 12 minutes after a reaction time of 80 minutes, the yield of (69) is 76%. Lfsing sodium in the same reduction, the yields of compound (69) are 79 and 77 % after reaction times of 8 and 80 minutes respectively. Both the lithium and sodium enolates appear to be reasonably stable in liquid ammonia in the presence of alkali metal. Since the enolate salts are poorly soluble in ammonia, their resistance to protonation by it may be due in part to this factor. [Pg.39]

Alkali-metal thionylimides are prepared by the reaction of McsSiNSO with the appropriate alkali-metal tert-butoxide in THF (Eq. 9.1). The more soluble [(MeaNlsS]" salt has also been reported (Eq. 9.2). ... [Pg.164]

Adds.—A free acid may be at once identified by its solubility in a holution of sodium carbonate and by being reprecipitated by concentrated hydrochloric acid. If a metal has been dis-coveied in the piehminary examination, a careful examination must be made for an organic acid. As the substance is insoluble ill water the metal will probably not be an alkali metal. Boil the substance with sodium carbonate solution. The sodium salt of the acid passes into solution and the metallic carbonate IS precipitated. Filter boil the filtrate with a slight excess of nitric acid, add excess of ammonia and boil until neutral, tests may then be applied in order to identify one of the common acids and the ni.p. determined but beyond this it is impossible to carry the investigation in a limited time. [Pg.337]

Lithium was recognized as a new alkali metal by J. A. Arfved.son in 1817 whilst he was working as a young assistant in J. J. Berzelius s laboratory. He noted that Li compounds were similar to those of Na and K but that the carbonate and hydroxide were much less soluble... [Pg.68]

The small size of lithium frequently confers special properties on its compounds and for this reason the element is sometimes termed anomalous . For example, it is miscible with Na only above 380° and is immiscible with molten K, Rb and Cs, whereas all other pairs of alkali metals are miscible with each other in all proportions. (The ternary alloy containing 12% Na, 47% K and 41% Cs has the lowest known mp, —78°C, of any metallic system.) Li shows many similarities to Mg. This so-called diagonal relationship stems from the similarity in ionic size of the two elements / (Li ) 76pm, / (Mg ) 72pm, compared with / (Na ) 102pm. Thus, as first noted by Arfvedson in establishing lithium as a new element, LiOH and LiiCOs are much less soluble than the corresponding... [Pg.76]

Compounds of Tl have many similarities to those of the alkali metals TIOH is very soluble and is a strong base TI2CO3 is also soluble and resembles the corresponding Na and K compounds Tl forms colourless, well-crystallized salts of many oxoacids, and these tend to be anhydrous like those of the similarly sized Rb and Cs Tl salts of weak acids have a basic reaction in aqueous solution as a result of hydrolysis Tl forms polysulfldes (e.g. TI2S3) and polyiodides, etc. In other respects Tl resembles the more highly polarizing ion Ag+, e.g. in the colour and insolubility of its chromate, sulfide, arsenate and halides (except F), though it does not form ammine complexes in aqueous solution and its azide is not explosive. [Pg.226]


See other pages where Alkali metals solubility is mentioned: [Pg.169]    [Pg.169]    [Pg.30]    [Pg.101]    [Pg.183]    [Pg.187]    [Pg.246]    [Pg.389]    [Pg.363]    [Pg.10]    [Pg.130]    [Pg.492]    [Pg.390]    [Pg.410]    [Pg.26]    [Pg.189]    [Pg.76]    [Pg.77]    [Pg.79]    [Pg.103]    [Pg.110]    [Pg.382]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Alkali metals compound solubility

Ammonia alkali metals soluble

Metal solubility

Oxide solubilities in melts based on alkali- and alkaline-earth metal halides

Regularities of oxide solubilities in melts based on alkali and alkaline-earth metal halides

Solubilities of alkali earth metal carbonates in KCl-NaCl eutectic

© 2024 chempedia.info