Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reaction Stereochemical control

Proton transfers allow this inline to be converted into an enamine, which acts as the nucleophile in the aldol reaction. Stereochemical control (it s a syn aldol) comes from the way in which the two molecules are held by the enzyme as they combine. The product is the imine, which is hydrolysed to the open-chain form of fructose-1,6-diphosphate. [Pg.1388]

With few exceptions, the stereochemical outcome of the aldol reaction is controlled by the enzyme and does not depend on the substrate structure (or on its stereochemistry). Therefore, the configuration of the carbon atoms adjacent to the newly formed C-C bond is highly predictable. Furthermore, most aldolases are very restricted concerning their donor (the nucleophile), but possess relaxed substrate specificities with respect to the acceptor (the electrophile), which is the carbonyl group of an aldehyde or ketone. This is understandable, bearing in mind that the enzyme has to perform an umpolung on the donor, which is a sophisticated task in an aqueous environment ... [Pg.213]

The enantiomers are obtained as a racemic mixture if no asymmetric induction becomes effective. The ratio of diastereomers depends on structural features of the reactants as well as the reaction conditions as outlined in the following. By using properly substituted preformed enolates, the diastereoselectivity of the aldol reaction can be controlled. Such enolates can show E-ot Z-configuration at the carbon-carbon double bond. With Z-enolates 9, the syn products are formed preferentially, while fi-enolates 12 lead mainly to anti products. This stereochemical outcome can be rationalized to arise from the more favored transition state 10 and 13 respectively ... [Pg.7]

Both of the 4,5-tran.v-diaslereomers of 4,5-dihydro-4-(4-methoxyphenyl)-5-methyl-3-[(7 )-(4-methylphenylsulfinyl)methyl]isoxazole (24) show excellent stereoselection in reactions with aldehydes. Despite the bulky substituents at the 4,5-dihydroisoxazole nucleus, the stereochemical outcome of the reaction is controlled by the sulfoxide stereogenicity. The pairs of 4,5-dihydro-3-(2-hydroxyalkyl)-4-(4-methoxyphenyl)-5-methylisoxazoles, obtained by desulfurization of the corresponding aldol adducts, have the same configuration at the hydroxy-substituted carbon (C-2 ) and opposite configuration in the 4- and 5-positions of the dihydroisoxazole ring24. [Pg.617]

Stereochemical Control by the Enolate or Enolate Equivalent. The facial selectivity of aldol addition reactions can also be controlled by stereogenic centers in the nucleophile. A stereocenter can be located at any of the adjacent positions on an enolate or enolate equivalent. The configuration of the substituent can influence the direction of approach of the aldehyde. [Pg.101]

Stereochemical Control Through Chiral Auxiliaries. Another approach to control of stereochemistry is installation of a chiral auxiliary, which can achieve a high degree of facial selectivity.124 A very useful method for enantioselective aldol reactions is based on the oxazolidinones 10,11, and 12. These compounds are available in enantiomerically pure form and can be used to obtain either enantiomer of the desired product. [Pg.114]

The stereochemical outcome of the Mukaiyama reaction can be controlled by the type of Lewis acid used. With bidentate Lewis acids the aldol reaction led to the anti products through a Cram chelate control [366]. Alternatively, the use of a monoden-tate Lewis acid in this reaction led to the syn product through an open Felkin-Anh... [Pg.156]

Perfect stereochemical control in the synthesis of sy -a-methyl-/ -hydroxy thioesters has been achieved by asymmetric aldol reaction between the silyl enol ether of. S -ethyl propanethioate (1-trimethylsiloxy-l-ethylthiopropene) and aldehydes using a stoichiometric amount of chiral diamine-coordinated tin(II)... [Pg.157]

Now, we examine the interaction of chiral aldehyde (-)-96 with chiral enolate (S )-lOOb. This aldol reaction gives 104 and 105 in a ratio of 104 105 > 100 1. Changing the chirality of the enolate reverses the result Compound 104 and 105 are synthesized in a ratio of 1 30 (Scheme 3-38).66 The two reactions (—)-96 + (S )-lOOb and (—)-96 + (7 )-100b are referred to as the matched and mismatched pairs, respectively. Even in the mismatched pair, stereoselectivity is still acceptable for synthetic purposes. Not only is the stereochemical course of the aldol reaction fully under control, but also the power of double asymmetric induction is clearly illustrated. [Pg.165]

In the crossed aldol condensation between carbonyl partners there are four possible product stereoisomers (eq. [1]). Consequently, there are two stereochemical aspects associated with the reaction The first deals with internal stereochemical control or diastereoselec-tion [A( ) vs. B( )], and the second deals with absolute stereochemi-... [Pg.4]

Other studies have provided additional data on the relative stabilities of the lithium aldolates 14 and 15 derived from the condensation of dilithium enediolates 13 (Rj = alkyl, aryl) with representative aldehydes (eq. [ 10]) (16). Kinetic aldol ratios were also obtained for comparison in this and related studies (16,17). As summarized in Table 4, the diastereomeric aldol chelates 14a and ISa, derived from the enolate of phenylacetic acid 13 (R = Ph), reach equilibrium after 3 days at 25° C (entries A-D). The percentage of threo diastere-omer 15 increases with the increasing steric bulk of the aldehyde ligand R3 as expected. It is noteworthy that the diastereomeric aldol chelates 14a and 15a (Rj = CH3, C2HS, i-C3H7) do not equilibrate at room temperature over the 3 day period (16). In a related study directed at delineating the stereochemical control elements of the Reformatsky reaction, Kurtev examined the equilibration of both... [Pg.10]

The ultimate goal of designing highly enantioselective aldol condensations demands that all stereochemical aspects of the bond construction process be kinetically controlled. Over the past 5 years, this objective has stimulated a great deal of research, and a wealth of new information is now becoming available on the important kinetic stereochemical control elements and possible transition state geometries for this reaction. [Pg.13]

Note that aldol condensations I, II and III concern the creation of a relative configuration 2,3-syn, which can be easily achieved starting from the (Z)-enolates 74a-74c. Scheme 9.27 summarises the synthesis of 93 and 95, which are equivalent to fragments B and A, respectively. Compound 88 is the abovementioned Prelog-Djerassi lactonic acid 42 which is obtained in optically pure from (>98% ee). On the other hand, for the stereochemical control of the aldol condensation IV a different methodology is necessary whih involves the coupling of two structurally predefined reactants and which will not be discussed here (Scheme 9.28). An important feature of this reaction is that the coordination of Li" " with the oxygen atom at the P-position of the aldehyde 95 is mainly responsible for the observed stereoselection [22e]. [Pg.262]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

On the other hand, the method of Mukaiyama can be succesfully applied to silyl enol ethers of acetic and propionic acid derivatives. For example, perfect stereochemical control is attained in the reaction of silyl enol ether of 5-ethyl propanethioate with several aldehydes including aromatic, aliphatic and a,j5-unsaturated aldehydes, with syir.anti ratios of 100 0 and an ee >98%, provided that a polar solvent, such as propionitrile, and the "slow addition procedure " are used. Thus, a typical experimental procedure is as follows [32e] to a solution of tin(II) triflate (0.08 mmol, 20 mol%) in propionitrile (1 ml) was added (5)-l-methyl-2-[(iV-l-naphthylamino)methyl]pyrrolidine (97b. 0.088 mmol) in propionitrile (1 ml). The mixture was cooled at -78 °C, then a mixture of silyl enol ether of 5-ethyl propanethioate (99, 0.44 mmol) and an aldehyde (0.4 mmol) was slowly added to this solution over a period of 3 h, and the mixture stirred for a further 2 h. After work-up the aldol adduct was isolated as the corresponding trimethylsilyl ether. Most probably the catalytic cycle is that shown in Scheme 9.30. [Pg.267]

According to equation 102, stereochemically homogeneous 3-carbonyl-substimted tetrahydrofurans are constructed in a brick-box system by sequential homoaldol and aldol reaction. The metallated aUyl carbamate serves as an equivalent for the chiral dianion A, which accepts two different aldehydes B and C in a highly controlled manner. ... [Pg.1132]

An advantage of these enzymes is that they are stereocomplementary, in that they can synthesize the four possible diastereoisomers of vicinal diols from achiral aldehyde acceptors and DHAP (Scheme 4.2). Although this statement is generally used and accepted, it is not completely true since tagatose-l,6-bisphosphate aldolase (TBPA) from Escherichia coli-the only TBPA that has been investigated in terms of its use in synthesis-does not seems to control the stereochemistry of the aldol reaction when aldehydes different from the natural substrate were used as acceptors [7]. However, this situation could be modified soon since it has been demonstrated that the stereochemical course of TBPA-catalyzed C—C bond formation may be modified by enzyme-directed evolution [8]. [Pg.63]

Oppolzer has designed two approaches to modhephene, both of which are based on the high level of stereochemical control attainable in intramolecular thermal ene reactions. In the first (Scheme XCIV), a, jJ-unsaturated ketone 793 is obtained by aldol methodology and heated at 250 °C in toluene to produce 794 A methyl group and double bond are next introduced in standard fashion prior to arrival at the final sesquiterpene stage. [Pg.84]

The aldol reaction between a chiral a-amino aldehyde 16 and an acetate derived enolate 17 creates a new stereogenic center and two possible diastereomers. Several different methods for the synthesis of statine derivatives following an aldol reaction have been reported most of them lead to a mixture of the (35,45)- and (3/ ,45)-diastereomers 18 (Scheme 3), which have to be separated by laborious chromatographic methods.[17 211 Two distinct approaches for stereochemical control have been used substrate control and reagent control. [Pg.571]

Recently, a conceptually different synthesis of MeBmt using an asymmetric glycine aldol reaction was reported by Evans and Weber [29]. The key step consists in the stereochemically controlled condensation of the chiral glycine enolate synthon (23) with the (R)-aldehyde (24) mediated by stannous triflate (tin salt of trifluoromethanesulphonic acid). The desired syn-aldol adduct (25) was isolated in form of the heterocyclic compound (26). The sense of asymmetric induction in the aldol reaction was established by conversion of (26) over three steps into uniform MeBmt (3). [Pg.21]

Aldol reactions enjoy great recognition as a useful tool for the synthesis of building blocks in natural product and drug synthesis [42, 182]. The stereochemistry of the stereogenic centers formed can be controlled by various means. Besides chiral auxiliaries, catalytic methods with chiral Lewis acids, organocatalysts, or catalytic antibodies were established for stereochemical control [183-187]. [Pg.29]

The stereochemical course of the aldol reaction can be controlled by the judicious selection of the enolization reagents. Treatment of propionate esters with <7-Hex2BOTf and triethylamine produced anti-aldol products, and that of with Bu2BOTf and diisopropylethylamine selectively gave syn-aldol products after reaction with aldehydes (Equation (180)).684 685 Complementary anti- and yy/z-selective asymmetric aldol reactions were also demonstrated in structurally related chiral norephedrine-derived propionate esters (Equation (181)).686... [Pg.201]

The cyclic transition state explains how enolate geometry controls the stereochemical outcome of the aldol reaction. But what controls the geometry of the enolate For lithium enolates of ketones the most important factor is the size of the group that is not enolized. Large groups force the enolate to adopt the cis geometry small groups allow the fram-enolate to form. Because we can t separate the lithium enolates, we just have to accept that the reactions of ketones with small R will be less dias ter eoselective. [Pg.900]

The aldol reaction catalyzed by Ab33F12 is outlined in Scheme 5.65. Regardless of the stereochemistry at C(2) of the aldehyde substrate shown (Scheme 5.65), its antibody catalyzed reaction with acetone resulted in a diastereoselective addition of acetone to the S/ -facc of the aldehyde. The products were formed with similar yields, and thus kinetic resolution was observed. However, the degree of facial stereochemical control of the reaction is surprising, since no stereochemical information was built into the hapten. For the... [Pg.328]


See other pages where Aldol reaction Stereochemical control is mentioned: [Pg.44]    [Pg.187]    [Pg.246]    [Pg.499]    [Pg.613]    [Pg.132]    [Pg.65]    [Pg.1173]    [Pg.1337]    [Pg.156]    [Pg.92]    [Pg.791]    [Pg.488]    [Pg.854]    [Pg.504]    [Pg.105]    [Pg.20]    [Pg.270]    [Pg.317]    [Pg.132]    [Pg.60]   
See also in sourсe #XX -- [ Pg.690 ]




SEARCH



Aldol reaction control

Stereochemical control

Stereochemical reactions

© 2024 chempedia.info