Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol chelation

Other studies have provided additional data on the relative stabilities of the lithium aldolates 14 and 15 derived from the condensation of dilithium enediolates 13 (Rj = alkyl, aryl) with representative aldehydes (eq. [ 10]) (16). Kinetic aldol ratios were also obtained for comparison in this and related studies (16,17). As summarized in Table 4, the diastereomeric aldol chelates 14a and ISa, derived from the enolate of phenylacetic acid 13 (R = Ph), reach equilibrium after 3 days at 25° C (entries A-D). The percentage of threo diastere-omer 15 increases with the increasing steric bulk of the aldehyde ligand R3 as expected. It is noteworthy that the diastereomeric aldol chelates 14a and 15a (Rj = CH3, C2HS, i-C3H7) do not equilibrate at room temperature over the 3 day period (16). In a related study directed at delineating the stereochemical control elements of the Reformatsky reaction, Kurtev examined the equilibration of both... [Pg.10]

Cerium enolate complexes of type Cl2Ce(OCR=CHR) achieve higher yields in stoichiometric cross-aldol reactions of sterically crowded substrates than the corresponding lithium enolates (Scheme 26). The larger cerium is assumed to be more effective in the inital aldol chelate formation. Formation of oc-bromo-/ -hydroxyketones is also catalyzed [249]. [Pg.214]

TlClamfF Aldol/chelating with a- and 3-alkoxy aldehydes cis anti-Cram products with chelatable aldehydes, trans Cram pr ucts with nonchelatable aldehydes... [Pg.667]

Noyori "Open" Transition State for non-Chelation Control Aldols... [Pg.82]

Non-chelation aldol reactions proceed via an "open" transition state to give syn aldols regardless of enolate geometry. [Pg.82]

Although modern transition state hypotheses may be adequate in special cases, the majority of aldol additions leading to enantiomerically pure products are still rationalized by the classical six-membered chelate transition state models40. [Pg.462]

The diastereoselectivity of this reaction contrasts dramatically with the generally low selectiv-ities observed for aldol reactions of lithium enolates of iron acyls. It has been suggested thal this enolate exists as a chelated species48 the major diastereomer produced is consistent with the transition state E which embodies the usual antiperiplanar enolate geometry. [Pg.543]

The Lewis acid mediated addition of silyl enol ethers or silylketcne acetals to oc-alkoxyaldehydcs is the most versatile and reliable method of providing chelation control in aldol-type additions3. The stereochemical outcome is as predicted by Cram s cyclic model11 ... [Pg.566]

The Mukaiyama variation of the aldol reaction also allows 1,3-induced chelation control. Thus, the reaction of the enolsilane or silylketene acetal with (5 )-3-benzyloxybutanal results in both cases in the predominant formation of the cwt/ -adduct (92 8 and 90 10), respectively14. [Pg.568]

The aldol reaction of 2,2-dimethyl-3-pentanone, which is mediated by chiral lithium amide bases, is another route for the formation of nonracemic aldols. Indeed, (lS,2S)-l-hydroxy-2,4,4-trimethyl-l-phenyl-3-pentanone (21) is obtained in 68% ee, if the chiral lithiated amide (/ )-A-isopropyl-n-lithio-2-methoxy-l-phenylethanamine is used in order to chelate the (Z)-lithium cnolate, and which thus promotes the addition to benzaldehyde in an enantioselective manner. No anti-adduct is formed25. [Pg.583]

In contrast, the diastereoselectivity of the conjugate addition of a chiral alkenylcoppcr-phosphinc complex to 2-mcthyl-2-cyclopentenone was dictated by the chirality of the reagent63. The double Michael addition using the cyclopentenone and 3-(trimethylsilyl)-3-buten-2-one and subsequent aldol condensation gave 4 in 58 % overall yield. The first Michael addition took place from the less hindered face of the m-vinylcopper, in which chelation between copper and the oxygen atom fixed the conformation of the reagent. [Pg.913]

Summary of the Relationship between Diastereoselectivity and the Transition Structure. In this section we considered simple diastereoselection in aldol reactions of ketone enolates. Numerous observations on the reactions of enolates of ketones and related compounds are consistent with the general concept of a chairlike TS.35 These reactions show a consistent E - anti Z - syn relationship. Noncyclic TSs have more variable diastereoselectivity. The prediction or interpretation of the specific ratio of syn and anti product from any given reaction requires assessment of several variables (1) What is the stereochemical composition of the enolate (2) Does the Lewis acid promote tight coordination with both the carbonyl and enolate oxygen atoms and thereby favor a cyclic TS (3) Does the TS have a chairlike conformation (4) Are there additional Lewis base coordination sites in either reactant that can lead to reaction through a chelated TS Another factor comes into play if either the aldehyde or the enolate, or both, are chiral. In that case, facial selectivity becomes an issue and this is considered in Section 2.1.5. [Pg.78]

In the discussion of the stereochemistry of aldol and Mukaiyama reactions, the most important factors in determining the syn or anti diastereoselectivity were identified as the nature of the TS (cyclic, open, or chelated) and the configuration (E or Z) of the enolate. If either the aldehyde or enolate is chiral, an additional factor enters the picture. The aldehyde or enolate then has two nonidentical faces and the stereochemical outcome will depend on facial selectivity. In principle, this applies to any stereocenter in the molecule, but the strongest and most studied effects are those of a- and (3-substituents. If the aldehyde is chiral, particularly when the stereogenic center is adjacent to the carbonyl group, the competition between the two diastereotopic faces of the carbonyl group determines the stereochemical outcome of the reaction. [Pg.86]

The stereoselectivity of aldol addition is also affected by chelation.81 a- and P-Alkoxy aldehydes can react through chelated structures with Li+ and other Lewis acids that can accommodate two donor groups. [Pg.92]

Thus we see that steric effects, chelation, and the polar effects of a- and (3-substituents can influence the facial selectivity in aldol additions to aldehydes. These relationships provide a starting point for prediction and analysis of stereoselectivity... [Pg.96]

These examples and those in Scheme 2.6 illustrate the key variables that determine the stereochemical outcome of aldol addition reactions using chiral auxiliaries. The first element that has to be taken into account is the configuration of the ring system that is used to establish steric differentiation. Then the nature of the TS, whether it is acyclic, cyclic, or chelated must be considered. Generally for boron enolates, reaction proceeds through a cyclic but nonchelated TS. With boron enolates, excess Lewis acid can favor an acyclic TS by coordination with the carbonyl electrophile. Titanium enolates appear to be somewhat variable but can be shifted to chelated TSs by use of excess reagent and by auxiliaries such as oxazolidine-2-thiones that enhance the tendency to chelation. Ultimately, all of the factors play a role in determining which TS is favored. [Pg.125]

Summary of Facial Stereoselectivity in Aldol and Mukaiyama Reactions. The examples provided in this section show that there are several approaches to controlling the facial selectivity of aldol additions and related reactions. The E- or Z-configuration of the enolate and the open, cyclic, or chelated nature of the TS are the departure points for prediction and analysis of stereoselectivity. The Lewis acid catalyst and the donor strength of potentially chelating ligands affect the structure of the TS. Whereas dialkyl boron enolates and BF3 complexes are tetracoordinate, titanium and tin can be... [Pg.133]

Aldol addition and related reactions of enolates and enolate equivalents are the subject of the first part of Chapter 2. These reactions provide powerful methods for controlling the stereochemistry in reactions that form hydroxyl- and methyl-substituted structures, such as those found in many antibiotics. We will see how the choice of the nucleophile, the other reagents (such as Lewis acids), and adjustment of reaction conditions can be used to control stereochemistry. We discuss the role of open, cyclic, and chelated transition structures in determining stereochemistry, and will also see how chiral auxiliaries and chiral catalysts can control the enantiose-lectivity of these reactions. Intramolecular aldol reactions, including the Robinson annulation are discussed. Other reactions included in Chapter 2 include Mannich, carbon acylation, and olefination reactions. The reactivity of other carbon nucleophiles including phosphonium ylides, phosphonate carbanions, sulfone anions, sulfonium ylides, and sulfoxonium ylides are also considered. [Pg.1334]

The stereochemical outcome of the Mukaiyama reaction can be controlled by the type of Lewis acid used. With bidentate Lewis acids the aldol reaction led to the anti products through a Cram chelate control [366]. Alternatively, the use of a monoden-tate Lewis acid in this reaction led to the syn product through an open Felkin-Anh... [Pg.156]

Several reactions of carbonyl groups in an LPDE system have been examined. Mukaiyama aldol reactions are effectively promoted in an LPDE solution, and remarkable chelating effects of oxygen functional groups at the a-positions of aldehydes are observed (Scheme 4).16,17 Regarding... [Pg.400]

The key step in the synthesis of A-ring fragment 50 [56] is the chelation-controlled addition of allylstannane 53 to aldehyde 52, which sets the C7 stereocenter and introduces the C8 gem-dimethyl moiety. Aldehyde 52 is itself prepared from 1,3-propanediol using the author s protocol for titanium-catalyzed enantioselective allylstannation [57], which sets the C5 stereocenter, followed by chelation-controlled Mukaiyama aldol addition [58] to establish the C3 stereocenter (Scheme 5.6). [Pg.115]

Perhaps the most elusive variant of the aldol reaction involves the addition of metallo-aldehyde enolates to ketones. A single stoichiometric variant of this transformation is known [29]. As aldolization is driven by chelation, intramolecular addition to afford a robust transition metal aldolate should bias the enolate-aldolate equilibria toward the latter [30, 31]. Indeed, upon exposure to basic hydrogenation conditions, keto-enal substrates provide the corresponding cycloal-dol products, though competitive 1,4-reduction is observed (Scheme 22.7) [24 d]. [Pg.720]

Ligands for catalytic Mukaiyama aldol addition have primarily included bidentate chelates derived from optically active diols,26 diamines,27 amino acid derivatives,28 and tartrates.29 Enantioselective reactions induced by chiral Ti(IY) complex have proved to be one of the most powerful stereoselective transformations for synthetic chemists. The catalytic asymmetric aldol reaction introduced by Mukaiyama is discussed in Section 3.4.1. [Pg.146]


See other pages where Aldol chelation is mentioned: [Pg.94]    [Pg.996]    [Pg.94]    [Pg.996]    [Pg.299]    [Pg.17]    [Pg.234]    [Pg.237]    [Pg.246]    [Pg.490]    [Pg.603]    [Pg.459]    [Pg.87]    [Pg.1221]    [Pg.71]    [Pg.73]    [Pg.1173]    [Pg.1228]    [Pg.97]    [Pg.120]    [Pg.134]    [Pg.56]    [Pg.136]    [Pg.161]   
See also in sourсe #XX -- [ Pg.917 ]




SEARCH



Aldehydes aldol reaction, chelation control

Aldol chelation-controlled

Aldol condensation chelation controlled

Aldol reaction chelation control

Aldol reaction chelation effects

Chelating compounds aldol reaction

Chelation aldol reaction

Chelation effects Mukaiyama aldol reaction

Chelation effects aldol addition reactions

Model Study via Chelation Control in the Aldol Reaction by Kalesse

© 2024 chempedia.info