Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium enolates aldehydes

Stereoselectivities of 99% are also obtained by Mukaiyama type aldol reactions (cf. p. 58) of the titanium enolate of Masamune s chired a-silyloxy ketone with aldehydes. An excess of titanium reagent (s 2 mol) must be used to prevent interference by the lithium salt formed, when the titanium enolate is generated via the lithium enolate (C. Siegel, 1989). The mechanism and the stereochemistry are the same as with the boron enolate. [Pg.62]

In contrast, fluorinated ketones have been used as both nucleophilic and electrophilic reaction constituents The (Z)-lithium enolate of 1 fluoro 3,3-di-methylbutanone can be selectively prepared and undergoes highly diastereoselec-tive aldol condensations with aldehydes [7] (equation 8) (Table 4)... [Pg.617]

The lithium enolate of the 2(5//)-furanone 58 reacted with aldehydes to give a mixture of the y-adducts 154 and 155 together with the a-adduct 156, typically in a 1 1 6 ratio (Scheme 45) however, no significant selectivity was achieved (87TL985). [Pg.134]

Ancos and colleagues studied the behavior of 5-methoxy- 163a and (5-ethylthio)-4-pyrrolidin-l-yl-2(5//)-furanones 163b (Y = OMe, SEt) toward aldehydes (91T3171). First, the lithium enolates 164 from these furanones, generated by... [Pg.134]

When a cold (-78 °C) solution of the lithium enolate derived from amide 6 is treated successively with a,/ -unsaturated ester 7 and homogeranyl iodide 8, intermediate 9 is produced in 87% yield (see Scheme 2). All of the carbon atoms that will constitute the complex pentacyclic framework of 1 are introduced in this one-pot operation. After some careful experimentation, a three-step reaction sequence was found to be necessary to accomplish the conversion of both the amide and methyl ester functions to aldehyde groups. Thus, a complete reduction of the methyl ester with diisobutylalu-minum hydride (Dibal-H) furnishes hydroxy amide 10 which is then hydrolyzed with potassium hydroxide in aqueous ethanol. After acidification of the saponification mixture, a 1 1 mixture of diastereomeric 5-lactones 11 is obtained in quantitative yield. Under the harsh conditions required to achieve the hydrolysis of the amide in 10, the stereogenic center bearing the benzyloxypropyl side chain epimerized. Nevertheless, this seemingly unfortunate circumstance is ultimately of no consequence because this carbon will eventually become part of the planar azadiene. [Pg.467]

Carbohydrate-derived titanium cnolates also provide yvn-x-amino-/l-hydroxy esters of high diastcrcomeric and enantiomeric purity. For this purpose, the lithium enolate derived from ethyl (2,2,5,5-tetramcthyl-2,5-disilapyrrolidin-l-yl)acetate is first transmctalated with chloro(cy-clopentadienyl)bis(1,2 5,6-di-0-isopropylidene-a-D-glucofuranos-3-0-yl)titanium and subsequently reacted with aldehydes.. vj-n-a-Amino-/ -hydroxy esters are almost exclusively obtained via a predominant /te-side attack (synjanti 92 8 to 96 4 87-98% ee for the xvn-adducts)623-b. [Pg.476]

Transmetalation of lithium enolate 1 a (M = Li ) by treatment with tin(II) chloride at — 42 °C generates the tin enolate that reacts with prostereogenic aldehydes at — 78 °C to preferentially produce the opposite aldol diastereomer 3. Diastereoselectivities of this process may be as high as 97 3. This reaction appears to require less exacting conditions since similar results are obtained if one or two equivalents of tin(ll) chloride arc used. The somewhat less reactive tin enolate requires a temperature of —42 C for the reaction to proceed at an acceptable rate. The steric requirements of the tin chloride counterion are probably less than those of the diethyla-luminum ion (vide supra), which has led to the suggestion26 44 that the chair-like transition state I is preferentially adopted26 44. This is consistent with the observed diastereoselective production of aldol product 3, which is of opposite configuration at the / -carbon to the major product obtained from aluminum enolates. [Pg.536]

Reaction of the lithium enolate 2 with prochiral aldehydes at low temperature proceeds with little selectivity, producing all four possible diastereomers 3, 4, 5, and 6 in similar amounts50. Transmetalation of the lithium enolate by treatment with three equivalents of diethylaluminum chloride or with one equivalent of copper cyanide generates the corresponding cthylaluminum and copper enolates which react at — 100°C with prochiral aldehydes to produce selectively diastereomers 1 and 2, respectively50. The reactivity of tin enolates of iron- propanoyl complexes has not been described. [Pg.543]

The lithium enolate of a-alkoxy substituted complex 9 also exhibited little selectivity upon reaction with aldehydes all four possible diastereomers were produced when it was treated with acetaldehyde49. [Pg.547]

In contrast, transmetalation of the lithium enolate at —40 C by treatment with one equivalent of copper cyanide generated a species 10b (M = Cu ) that reacted with acetaldehyde to selectively provide a 25 75 mixture of diastereomers 11 and 12 (R = CH3) which are separable by chromatography on alumina. Other diastereomers were not observed. Similar transmetalation of 10a (M = Li0) with excess diethylaluminum chloride, followed by reaction with acetaldehyde, produced a mixture of the same two diastereomers, but with a reversed ratio (80 20). Similar results were obtained upon aldol additions to other aldehydes (see the following table)49. [Pg.548]

The lithium enolate of the oc-silyl-substituted iron-acyl complex 19 reacts with aldehydes, however, products of the Peterson elimination process (E)- and (Z)-22 are usually isolat-ed22- 23,36.37 for t[1js anc other preparations of a,/t-unsaturated iron-acyl complexes see Section I.3.4.2.5.I.3.). [Pg.549]

The addition of lithium enolates to 2-alkoxyaldehydes occurs either in a completely non-stereoselective manner, or with moderate selectivity in favor of the product predicted by the Cram-Felkin-Anh model28 ( nonchelation control 3, see reference 28 for a survey of this type of addition to racemic aldehydes). Thus, a 1 1 mixture of the diastereomeric adducts results from the reaction of lithiated tert-butyl acetate and 2-benzyloxypropanal4,28. [Pg.563]

The stereoselectivity is not significantly improved if boron enolates are used instead of lithium enolates. For example, the enantiomerically pure aldehyde (—)-(2S,4/ )-4-methoxycarbonyl-2-methylpentanal delivers the diastereomeric thioeslers in a ratio of 3 2 when treated with the indicated boron enolate29. [Pg.564]

The stereochemical outcome of the addition of lithium enolates of aldehydes and ketones to nitroalkenes is dependent upon the geometry of the nitroalkene and the enolate anion. The synjanti selectivity in the reaction of the lithium enolates of propanal, eyelopentanone and cyclohexanone with ( )- and (Z)-l-nitropropene has been reported1. [Pg.1011]

Alternatively, Cushman has devised a facile route to pyrroles by the reaction of Boc-a-amino aldehydes or ketones 14 with the lithium enolates of ketones 15 to afford aldol intermediates 16 which cyclize to pyrroles 17 under mild acidic conditions <96JOC4999>. This method offers several advantages over the Knorr since it employs readily available Boc-a-amino aldehydes or ketones and utilizes simple ketones instead of the p-diketo compounds or p-keto esters normally used in the Knorr. [Pg.98]

In Section 5.1.3 the conversion of aldehydes 491 and 494 into N-silylated Schiff bases and their in-situ reaction with allylmagnesium bromide into unsaturated secondary amines 493 and 495 is described. Likewise, reactions of the N-silylated Schiff bases such as 489 with the lithium enolate of methyl isobutyrate 498 to give yS-lactams such as 499 are also discussed in Section 5.1.3. [Pg.117]

Aldol Reactions of Lithium Enolates. Entries 1 to 4 in Scheme 2.1 represent cases in which the nucleophilic component is a lithium enolate formed by kinetically controlled deprotonation, as discussed in Section 1.1. Lithium enolates are usually highly reactive toward aldehydes and addition occurs rapidly when the aldehyde is added, even at low temperature. The low temperature ensures kinetic control and enhances selectivity. When the addition step is complete, the reaction is stopped by neutralization and the product is isolated. [Pg.67]

The general trend is that boron enolates parallel lithium enolates in their stereoselectivity but show enhanced stereoselectivity. There also are some advantages in terms of access to both stereoisomeric enol derivatives. Another important characteristic of boron enolates is that they are not subject to internal chelation. The tetracoordinate dialkylboron in the cyclic TS is not able to accept additional ligands, so there is no tendency to form a chelated TS when the aldehyde or enolate carries a donor substituent. Table 2.2 gives some typical data for boron enolates and shows the strong correspondence between enolate configuration and product stereochemistry. [Pg.73]

Titanium enolates can also be used under conditions in which the titanium exists as an ate species. Crossed aldehyde-aldehyde additions have been accomplished starting with trimethylsilyl enol ethers, which are converted to lithium enolates and then to ate species by addition of Ti(0- -Bu)4.26 These conditions show only modest stereoselectivity. [Pg.75]

The lithium enolates of a-alkoxy esters exhibit high stereoselectivity, which is consistent with involvement of a chelated enolate.374 39 The chelated ester enolate is approached by the aldehyde in such a manner that the aldehyde R group avoids being between the a-alkoxy and methyl groups in the ester enolate. A syn product is favored for most ester groups, but this shifts to anti with extremely bulky groups. [Pg.80]

A study of the lithium enolate of pinacolone with several a-phenyl aldehydes gave results generally consistent with the Felkin model. Steric, rather than electronic, effects determine the conformational equilibria.77 If the alkyl group is branched, it occupies the large position. Thus, the f-butyl group occupies the large position, not the phenyl. [Pg.90]

The potential for coordination depends on the oxy substituents.82 Alkoxy substituents are usually chelated, whereas highly hindered silyloxy groups usually do not chelate. Trimethylsiloxy groups are intermediate in chelating ability. The extent of chelation also depends on the Lewis acid. Studies with a-alkoxy and (3-alkoxy aldehydes with lithium enolates found only modest diastereoselectivity.83... [Pg.92]

Entry 5, where the same stereochemical issues are involved was used in the synthesis of (+)-discodermolide. (See Section 13.5.6 for a more detailed discussion of this synthesis.) There is a suggestion that this entry involves a chelated lithium enolate and there are two stereogenic centers in the aldehyde. In the next section, we discuss how the presence of stereogenic centers in both reactants affects stereoselectivity. [Pg.107]

Chelation can also be involved in double stereodifferentiation. The lithium enolate of the ketone 7 reacts selectively with the chiral aldehyde 6 to give a single stereoisomer.116 The enolate is thought to be chelated, blocking one face and leading to the observed product. [Pg.109]

The three fragments were then coupled. The C(16)—C(17) bond was established by addition of the lithium enolate of the aryl ester in the C(9)—C(16) fragment with the aldehyde group of the C(17)-C(24) fragment. The stereochemistry is consistent with the cyclic aldol addition TS. The adduct was immediately reduced to the diol 14 by LiAlH4. [Pg.1238]

In the presence of zinc chloride, stereoselective aldol reactions can be carried out. The aldol reaction with the lithium enolate of /-butyl malonate and various a-alkoxy aldehydes gave anti-l,2-diols in high yields, and 2-trityloxypropanal yielded the syn-l,2-diol under the same conditions.633 Stoichiometric amounts of zinc chloride contribute to the formation of aminoni-tropyridines by direct amination of nitropyridines with methoxyamine under basic conditions.634 Zinc chloride can also be used as a radical initiator.635... [Pg.1202]

The methyl y-oxoalkanoates shown are not available by alternative methods with similar efficiency and flexibility. Although the reaction of enamines with alkyl ot-bromoacetates proceeds well in some cases, yields are only moderate in many examples.8 A further drawback is that the methods for enamine generation lack the high degree of selectivity and mildness that is characteristic of the preparation of silyl enol ethers. Related alkylations of lithium enolates often afford low yields or polyalkylated products, and are in general very inefficient when aldehydes are utilized as the starting materials.9... [Pg.234]

Compound 17 is the so-called (+)-Prelog-Djerassi lactonic acid derived via the degradation of either methymycin or narbomycin. This compound embodies important architectural features common to a series of macrolide antibiotics and has served as a focal point for the development of a variety of new stereoselective syntheses. Another preparation of compound 17 is shown in Scheme 3-7.11 Starting from 8, by treating the boron enolate with an aldehyde, 20 can be synthesized via an asymmetric aldol reaction with the expected stereochemistry at C-2 and C-2. Treating the lithium enolate of 8 with an electrophile affords 19 with the expected stereochemistry at C-5. Note that the stereochemistries in the aldol reaction and in a-alkylation are opposite each other. The combination of 19 and 20 gives the final product 17. [Pg.141]

Studies show that the Zr-bearing bulky ligand is exclusively located in the bottom hemisphere with respect to the plane of the (Z)-enolate. The aldehyde molecule coordinates with the Zr atom and approaches from the same side, adopting a chair-like transition state. This leads to the formation of erythro-aldols (Scheme 3-9 and 23). For lithium enolate, the attack of alkyl or acyl halides in alkylation or acylation occurs directly on the top face of the enolate. [Pg.142]

Besides their application in asymmetric alkylation, sultams can also be used as good chiral auxiliaries for asymmetric aldol reactions, and a / -product can be obtained with good selectivity. As can be seen in Scheme 3-14, reaction of the propionates derived from chiral auxiliary R -OH with LICA in THF affords the lithium enolates. Subsequent reaction with TBSC1 furnishes the 0-silyl ketene acetals 31, 33, and 35 with good yields.31 Upon reaction with TiCU complexes of an aldehyde, product /i-hydroxy carboxylates 32, 34, and 36 are obtained with high diastereoselectivity and good yield. Products from direct aldol reaction of the lithium enolate without conversion to the corresponding silyl ethers show no stereoselectivity.32... [Pg.148]

Covalently bonded chiral auxiliaries readily induce high stereoselectivity for propionate enolates, while the case of acetate enolates has proved to be difficult. Alkylation of carbonyl compound with a novel cyclopentadienyl titanium carbohydrate complex has been found to give high stereoselectivity,44 and a variety of ft-hydroxyl carboxylic acids are accessible with 90-95% optical yields. This compound was also tested in enantioselective aldol reactions. Transmetalation of the relatively stable lithium enolate of t-butyl acetate with chloro(cyclopentadienyl)-bis(l,2 5,6-di-<9-isopropylidene-a-D-glucofuranose-3-0-yl)titanate provided the titanium enolate 66. Reaction of 66 with aldehydes gave -hydroxy esters in high ee (Scheme 3-23). [Pg.155]


See other pages where Lithium enolates aldehydes is mentioned: [Pg.58]    [Pg.328]    [Pg.650]    [Pg.17]    [Pg.282]    [Pg.478]    [Pg.490]    [Pg.539]    [Pg.766]    [Pg.236]    [Pg.775]    [Pg.1221]    [Pg.66]    [Pg.67]    [Pg.110]    [Pg.1199]    [Pg.1088]    [Pg.415]    [Pg.23]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 , Pg.37 , Pg.38 , Pg.39 , Pg.40 ]




SEARCH



Aldehyde enolate

Aldehyde enols

Aldehyde lithium enolates aggregation

Aldehyde lithium enolates aldol reaction

Aldehyde lithium enolates structure

Aldehydes enolates

Aldehydes enolization

Aldehydes with lithium enolates

Enolate lithium

Enolates lithium

© 2024 chempedia.info