Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation with enamines

Another similar example concerns the alkylation of enamines. This reaction works well with reactive a-halocarbonyl compounds (frames 175ff) but simple alkyl hahdes often react on nitrogen ... [Pg.106]

Alkylations of enamines of a,)9-unsaturated ketones with alkyl halides often give very poor yields of C-alkylated products because of competing. -alkylation.In the type of transformation illustrated here, direct alkylations of enamines are completely unsuccessful, even in cases where hindered enamines are used. On the other hand, the metaUoenamine method can be applied generally with good success in the problem of monoalkylation of ,)3-unsaturated ketones. ... [Pg.71]

The pyrrolidine enamines of /l -3.]cetosteroids (111), on alkylation with methyl iodide, gave mainly the N-alkylated product (5,55) in nonpolar solvents such as benzene. The reaction in more polar solvents gave the 4-methylated product (5.S). The reaction of (111) with perchloryl fluoride involves attack at the C-4 atom to give, after acid hydrolysis, either 4-fluoro-zJ -3-ketone (119) or 4,4-difluoro-zJ -3-ketone 120), depending on the reaction conditions (59). [Pg.34]

Alkylation of enamines can take place on carbon or on nitrogen (see Section I). The theoretical considerations and reaction conditions which determine whether C or N alkylation takes place have already been studied extensively 26-32). These studies have shown that the facility with which alkylation takes place depends on the basicity of theenamine, on the ease of formation of a trigonal atom in the transition state, and on the nature of the enamine, the alkylating agent, and the solvent. [Pg.119]

With enamines of cyclic ketones direct C alkylation occurs with allyl and propargyl as well as alkyl halides. The reaction is again sensitive to the polarity of the solvent (29). The pyrrolidine enamine of cyclohexanone on reaction with ethyl iodide in dioxane gave 25% of 2-ethylcyclohexanone on hydrolysis, while in chloroform the yield was increased to 32%. [Pg.121]

One of the advantages of the enamine alkylation reaction over direct alkylation of the ketone under the influenee of strong base is that the major product is the monoalkylated derivative 29,32). When dialkylation is observed, it occurs at the least substituted carbon in contrast to alkylation with base, where the a-disubstituted product is formed. Dialkylation becomes the predominant reaction when a strong organic base is added and an excess of alkyl halide is used (29). Thus 1-N-pyrrolidino-l-cyclo-hexene (28) on treatment with two moles of allyl bromide in the presence of ethyl dicyclohexylamine (a strong organic base which is not alkylated under the reaction conditions) gave a 95 % yield of 2,6-diallylcyclohexanone (29). [Pg.122]

The 2,2 -dialkylation of enamines has been used for the synthesis of novel bi- and trieyeloketones (id). Alkylation of 1-N-pyrrolidino-l-cyclohexene (28) with 1,4-diiodobutane gave a 15% yield of bicyelo[1.3.4]-10-decanone (35), while alkylation with o-xylylenedibromide gave a 31 % yield of 2,6-o-xylyleneeyelohexanone (36). [Pg.123]

However, it has recently been shown (42) that monomeric enamines such as 42 react normally to give the benzothiazoline salt (43) on alkylation with alkyl and benzyl halides. [Pg.124]

Alkyl sulfonyl chlorides, having an a-hydrogen atom, react with enamines derived from aldehydes and cyclic ketones in the presence of triethylamine to give cyclic sulfones. Thus the enamine (22) gave the four-membered cyclic aminosulfone (143) on reaction with methanesulfonyl chloride (95). [Pg.145]

The previous sections have dealt with stable C=N-I- functionality in aromatic rings as simple salts. Another class of iminium salt reactions can be found where the iminium salt is only an intermediate. The purpose of this section is to point out these reactions even though they do not show any striking differences in their reactivity from stable iminium salts. Such intermediates arise from a-chloroamines (133-135), isomerization of oxazolidines (136), reduction of a-aminoketones by the Clemmensen method (137-139), reductive alkylation by the Leuckart-Wallach (140-141) or Clarke-Eschweiler reaction (142), mercuric acetate oxidation of amines (46,93), and in reactions such as ketene with enamines (143). [Pg.201]

The reactions of electrophilic alkenes (alkenes attached to electron-withdrawing groups) with enamines produce one or more of the following products simple alkylation (2), 1,2 cycloaddition (3), and 1,4 cycloaddition (4). Competition with C alkylation by N alkylation is inconsequential and therefore will be largely ignored (5,7). A stepwise ionic mechanism leading to these products necessarily involves the formation of a zwitterion intermediate (1) as the first step, which is then followed either by one of the... [Pg.213]

At higher temperatures the mixture of 10 and methyl vinyl ketone yields the 1,4-carbocyclic compound as described previously. Methyl isopropenyl ketone (5), ethyl acetylacrylate (d), 2-cyclohexenone (21), and 1-acetyl-1-cyclohexene (22) also undergo this type of cyclization reaction with enamines at higher temperatures. This cycloalkylation reaction occurs with enamines made of strongly basic amines such as pyrrolidine, but the less reactive morpholine enamine combines with methyl vinyl ketone to give only a simple alkylated product (7). Chlorovinyl ketones yield pyrans when allowed to react with the enamines of either alicyclic ketones or aldehydes (23). [Pg.216]

In a similar manner diethyl maleate (actually diethyl fumarate since the basic enamine catalyzes the maleate s isomerization upon contact) forms unstable 1,2 cycloadducts with enamines with hydrogens at temperatures below 30°C (37). At higher temperatures simple alkylated products are formed (41). Enamines with no )3 hydrogens form very stable 1,2 cycloadducts with diethyl maleate (36,37,41). The two adjacent carboethoxy groups of the cyclobutane adduct have been shown to be Irons to one another (36,37). [Pg.219]

Olefins conjugated with electron-withdrawing groups other than a carbonyl group undergo reactions with enamines in a manner similar to the carbonyl-conjugated electrophilic alkenes described above. Namely, they condense with an enamine to form a zwitterion intermediate from which either 1,2 cycloaddition to form a cyclobutane ring or simple alkylation can take place. [Pg.222]

Nitroolefins also offer the possibilities of 1,2 cycloaddition (37,57) or simple alkylation (57-59) products when they are allowed to react with enamines. The reaction of nitroethylene with the morpholine enamine of cyclohexanone led primarily to a cyclobutane adduct in nonpolar solvents and to a simple alkylated product in polar solvents (57). These products are evidently formed from kinetically controlled reactions since they cannot be converted to the other product under the conditions in which the other... [Pg.223]

Bifunctional molecules undergo intermolecular cyclizations with enamines through simple alkylations 112-114) and acylations 115). For example, the reaction between l-(N-pyrrolidino)cyclopentene and 1,4-diiodobutane produces, after hydrolysis, ketospirans 92 and 93 113). [Pg.233]

Reactions of Enamine Salts with OrganometalUc Compounds Organolithium and organomagnesium compounds react with enamine salts to give amines substituted on the ix-carbon atoms. The treatment of. -dehydroquinolizidinium perchlorate (163) with alkylmagnesium halides gives 9-alkylated quinolizidines (164) (252,256). Formation of... [Pg.289]

Reaction of organometallic compounds with enamine salts have been successfully used for the synthesis of some natural products (256). Thus reaction of the immonium salt of 0-alkylated enamino ketone 122 with isobutyllithium affords the compound 169. [Pg.290]

Other interesting synthetic applications of the ketone-derived enamine alkylation are found in the monomethylation of steroid enamines (249), extension of the benzylation reaction (250) to a ferrocene derivative (251), the use of a-bromoesters (252) and ketones (252) or their vinylogues (25J), in the syntheses of alantolactone (254-256), isoalantolactone (257), and with a bridged bis-enamine (258). The use of bifunctional alkylating agents is also seen in the introduction of an acetylenic substituent in the synthesis of the characteristic fragrant constituent of jasmine (259), the synthesis of macrocyclic ketolactones (260), the use of butyrolactone (261), and the intermolecular or intramolecular double alkylations of enamines with dihalides (262). [Pg.348]

A fundamental problem in the alkylation of enamines, which is inherent in the bidentate system, is the competition between the desired carbon alkylation and attack at the nitrogen. With unactivated alkyl halides (3,267), this becomes especially serious with the enamines derived fromcycloheptan-one, cyclooctanone, cyclononanone, and enamines derived from aldehydes. Increasing amounts of carbon alkylation are found with the more reactive allyl and benzyl halides (268-273). However, with allyl halides one also observes increasing amounts of dialkylation of enamines. [Pg.352]

The a alkylation of enamines has also been extended to photochemical and thermal reactions of carbon tetrachloride with enamines (292,293). [Pg.357]

Alkylation of enamines with epoxides or acetoxybromoalkanes provided intermediates for cyclic enol ethers (668) and branched chain sugars were obtained by enamine alkylation (669). Sodium enolates of vinylogous amides underwent carbon and nitrogen methylation (570), while vicinal endiamines formed bis-quaternary amonium salts (647). Reactions of enamines with a cyclopropenyl cation gave alkylated imonium products (57/), and 2-benzylidene-3-methylbenzothiazoline was shown to undergo enamine alkylation and acylation (572). A cyclic enamine was alkylated with methylbromoacetate and the product reduced with sodium borohydride to the key intermediate in a synthesis of the quebrachamine skeleton (57i). [Pg.357]

The problem of nitrogen alkylation of enamines, which one encounters with alkyl halides, is of no consequence in alkylations with positively activated olefins, since the generation of amonium salts can be expected to be reversible in these cases. Thus such enamine alkylations are obviously attractive to the synthetic chemist. Their particular importance, however, arises from avoidance of the serious obstacles often found with parallel enolate anion reactions. [Pg.359]

Unsaturated sulfoncs (314,315) and nitroolcfins (303,315-317) also give alkylation products with enamines. In the latter reactions the formation of nitroethyl or cyclobutane derivatives has been found (316) to depend on the reaction medium as well as steric and electronic parameters which determine the fate of zwitterionic intermediates. Thus no enamine products could... [Pg.363]

The alkylation of enamines with 2- and 4-vinyl pyridines has also been described (J/9). [Pg.365]

The alkylation of enamines with nitroolefins, which gives intermediates for reductive cyclization (6S2), also provided an example of a stable cycliza-tion product derived from attack of the intermediate imonium function by the nitro anion (683). A previously claimed tetrasubstituted enamine, which was obtained from addition of a vinylsulfone to morpholinocyclohexene (314), was shown to be the corresponding cyclobutane (684). Perfluoro-olefins also gave alkylation products with enamines (685). Reactions of enamines with diazodicarboxylate (683,686) have been used diagnostically for 6-substituted cyclohexenamines. In a reaction of 2-penten-4-one with a substituted vinylogous amide, stereochemical direction was seen to depend on solvent polarity (687). [Pg.375]

Primary and secondary halides do not perform well, mostly because N-alkylation becomes important, particularly with enamines derived from aldehydes. An alternative method, which gives good yields of alkylation with primary and secondary halides, is alkylation of enamine salts, which are prepared by treating an imine with ethylmagnesium bromide in THF ... [Pg.788]

Alkylation of enamines Addition of amines to triple-bond compounds Addition of amines to aldehydes or ketones Reaction between Grignard reagents and formamides Reaction of phosphonates with aldehydes or ketones... [Pg.1667]

Certain quaternary ammonium salts will alkylate [Co (DMG)2py] . The addition of PhCH2NMc3 I to a solution of the complex in methanol gives the PhCH2Co complex in 45% yield. The reaction works more slowly with dimethylpiperidinium iodide to give the CH3—Co complex 15). There is no alkylation with tertiary amines alone 164), but in the presence of equimolar amounts of dimethylacetylenedicarboxylate certain aliphatic tertiary amines can alkylate [Co (DMG)2py] in methanol solution. The reaction also produces the enamine derivative of a maleic ester, and the mechanism appears to involve addition of the amine to the triple bond to form an ammonium salt, which can then attack the Co(I) derivative (75). [Pg.388]


See other pages where Alkylation with enamines is mentioned: [Pg.691]    [Pg.733]    [Pg.791]    [Pg.49]    [Pg.123]    [Pg.218]    [Pg.353]    [Pg.119]    [Pg.84]    [Pg.186]    [Pg.558]    [Pg.1674]    [Pg.77]    [Pg.159]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Alkylation enamines

© 2024 chempedia.info