Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium existence

Titanium enolates can also be used under conditions in which the titanium exists as an ate species. Crossed aldehyde-aldehyde additions have been accomplished starting with trimethylsilyl enol ethers, which are converted to lithium enolates and then to ate species by addition of Ti(0- -Bu)4.26 These conditions show only modest stereoselectivity. [Pg.75]

Five naturally occurring isotopes of titanium exist. They are titanium-46, titanium-47, titanium-48, titanium-49, and titanium-50. The most abundant of these is titanium-48. It makes up about 75 percent of all titanium found in nature. Isotopes are two or more forms of an element. Isotopes differ from each other according to their mass number. The number written to the right of the element s name is the mass number. The mass number represents the number of protons plus neutrons in the nucleus of an atom of the element. The number of protons determines the element, but the number of neutrons in the atom of any one element can vary. Each variation is an isotope. [Pg.622]

Titanium is an element of group 4 of the periodic table. It is in the same group as zirconium and hafnium. It has a high similarity to silicon which was the same group in the old periodic table. Titanium exists in 5600 ppm in the Earth s crust [1], it is the fourth largest element after iron, aluminium and magnesium as common use metal. The titanium deposits are approx. 340 million tons or more [2], The span of life as a metal resource is three thousand years or more, the ranking of the life of resources as practical metals is the second after iron. [Pg.229]

The polymerization of olefins, promoted by homogeneous Ziegler catalysts based on biscyclopentadienyltitaniumflV) or analogous compounds and aluminum alkyls, is accompanied by a series of other reactions such as alkylation, hydrogen transfer, and reduction that greatly complicate the kinetic interpretation of the polymerization. It was found that the polymerizatiOTi takes place primarily into a Ti-C bond where the titanium exists as the titaniumflV) alkyl cation formed by alkylation and dissociation (1) and (2) [8-11] ... [Pg.3]

Anhydrous titanium dioxide is only soluble with difficulty in hot concentrated sulphuric acid dilution allows the crystallisation of a sulphate of formula T10S04.H20, but it is doubtful if the titanyl cation TiO actually exists, either in solution or the solid. Certainly [TifHjOIn] does not exist, and solutions of titanyl salts may best be considered to contain ions [Ti(0H)2(H204)] . Titanium... [Pg.371]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

Both the Toth and Alcoa processes provide aluminum chloride for subsequent reduction to aluminum. Pilot-plant tests of these processes have shown difficulties exist in producing aluminum chloride of the purity needed. In the Toth process for the production of aluminum chloride, kaolin [1332-58-7] clay is used as the source of alumina (5). The clay is mixed with sulfur and carbon, and the mixture is ground together, pelletized, and calcined at 700°C. The calcined mixture is chlorinated at 800°C and gaseous aluminum chloride is evolved. The clay used contains considerable amounts of silica, titania, and iron oxides, which chlorinate and must be separated. Silicon tetrachloride and titanium tetrachloride are separated by distillation. Resublimation of aluminum chloride is requited to reduce contamination from iron chloride. [Pg.147]

Titanium Monoxide. Titanium monoxide [12137-20-17, TiO, has a rock-salt stmcture but can exist with both oxygen and titanium vacancies. For stoichiometric TiO, the lattice parameter is 417 pm, but varies from ca 418 pm at 46 atom % to 4I62 pm at 54 atom % oxygen. Apparendy, stoichiometric TiO has ca 15% of the Ti and O sites vacant. At high temperatures (>900° C), these vacancies are randomly distributed at low temperatures, they become ordered. Titanium monoxide may be made by heating a stoichiometric mixture of titanium metal and titanium dioxide powders at 1600°C... [Pg.119]

Titanium Trichloride. Titanium trichloride [7705-07-9] exists in four different soHd polymorphs that have been much studied because of the importance of TiCl as a catalyst for the stereospecific polymerization of olefins (120,124). The a-, y-, and 5-forms are all violet and have close-packed layers of chlorines. The titaniums occupy the octahedral interstices between the layers. The three forms differ in the arrangement of the titaniums among the available octahedral sites. In a-TiCl, the chlorine sheets are hexagonaHy close-packed in y-TiCl, they are cubic close-packed. The brown P-form does not have a layer stmcture but, instead, consists of linear strands of titaniums, where each titanium is coordinated by three chlorines that act as a bridge to the next Ti The stmctural parameters are as follows ... [Pg.129]

Some of the chemicals mentioned above and others, such as chlorinated mbber or paraffin, antimony trioxide, calcium carbonate, calcium borate, pentaerythrithol, alumina trihydrate, titanium dioxide, and urea—melamine—formaldehyde resin, may be used to formulate fire retardant coatings. Many of these coatings are formulated in such a way that the films intumesce (expand) when exposed to fire, thus insulating the wood surface from further thermal exposure. Fire retardant coatings are mostly used for existing constmction. [Pg.329]

Titanium Dioxide. The specifications of titanium dioxide have been given previously. Titanium dioxide exists ia nature ia three crystalline forms anatase, brookite, and mtile, with anatase as the commonly available form. Anatase has a high refractive iadex (2.52) and excellent stabiUty toward light, oxidation, changes ia pH, and microbiological attack. Titanium dioxide is virtually iasoluble ia all common solvents. [Pg.452]

Ethyl Acetate. The esterification of ethanol by acetic acid was studied in detail over a century ago (357), and considerable Hterature exists on deterrninations of the equiUbrium constant for the reaction. The usual catalyst for the production of ethyl acetate [141-78-6] is sulfuric acid, but other catalysts have been used, including cation-exchange resins (358), a- uoronitrites (359), titanium chelates (360), and quinones and their pardy reduced products. [Pg.416]

The first equation ignores the existence of the intermediate titanium oxides, which is reasonable for this analysis of die oxidation mechanism.)... [Pg.267]

Mention has already been made in this chapter of metallocene-catalysed polyethylene (see also Chapter 2). Such metallocene catalysts are transition metal compounds, usually zirconium or titanium. Incorporated into a cyclopentadiene-based structure. During the late 1990s several systems were developed where the new catalysts could be employed in existing polymerisation processes for producing LLDPE-type polymers. These include high pressure autoclave and... [Pg.211]

The main oxides are the dioxides. In fact, Ti02 is by far the most important compound formed by the elements of this group, its importance arising predominantly from its use as a white pigment (see Panel, p. 959). It exists at room temperature in three forms — rutile, anatase and brookite, each of which occurs naturally. Each contains 6-coordinate titanium but rutile is the most common form, both in nature and as produced commercially, and the others transform into it on heating. The rutile... [Pg.961]

Perhaps because of inadequate or non-existent back-bonding (p. 923), the only neutral, binary carbonyl so far reported is Ti(CO)g which has been produced by condensation of titanium metal vapour with CO in a matrix of inert gases at 10-15 K, and identified spectroscopically. By contrast, if MCI4 (M = Ti, Zr) in dimethoxy-ethane is reduced with potassium naphthalenide in the presence of a crown ether (to complex the K+) under an atmosphere of CO, [M(CO)g] salts are produced. These not only involve the metals in the exceptionally low formal oxidation state of —2 but are thermally stable up to 200 and 130°C respectively. However, the majority of their carbonyl compounds are stabilized by n-bonded ligands, usually cyclopentadienyl, as in [M(/j5-C5H5)2(CO)2] (Fig. 21.8). [Pg.973]

Titanium dioxide exists in nature as three different polymorphs rutile, anatase and brookite. This material has been extensively studied during the last few decades due to its interesting physical properties and numerous technological applications. Rutile and anatase (a popular white pigment) are widely used in photocataly s and as sensors. Both of them have had new structural and electronic applications suggested recently (see for a review). [Pg.19]


See other pages where Titanium existence is mentioned: [Pg.102]    [Pg.117]    [Pg.128]    [Pg.102]    [Pg.117]    [Pg.96]    [Pg.24]    [Pg.102]    [Pg.117]    [Pg.128]    [Pg.102]    [Pg.117]    [Pg.96]    [Pg.24]    [Pg.10]    [Pg.486]    [Pg.140]    [Pg.360]    [Pg.22]    [Pg.242]    [Pg.541]    [Pg.403]    [Pg.7]    [Pg.246]    [Pg.386]    [Pg.94]    [Pg.108]    [Pg.109]    [Pg.116]    [Pg.120]    [Pg.134]    [Pg.445]    [Pg.1873]    [Pg.504]    [Pg.1128]    [Pg.146]    [Pg.35]    [Pg.51]    [Pg.311]    [Pg.868]    [Pg.868]   
See also in sourсe #XX -- [ Pg.433 ]




SEARCH



© 2024 chempedia.info